Solving chance-constrained spanning k-core problem via decomposition and integer programming

Abstract

Given a non-negative integer k, a graph of minimum degree at least k is called a k-core. The concept of k-cores can be used to design resilient networks that preserve low diameter and high vertex-connectivity upon limited vertex or edge failures. This article focuses on a chance-constrained version of the minimum spanning k-core problem under probabilistic edge failures. Specifically, given that the edges can fail randomly and independently, we want to find a subset of edges of minimum total cost such that the graph with this edge set is a k-core with probability at least 1α where α[0,1]. We first reformulate the non-convex chance-constrained optimization problem as a large-scale integer program. To solve it, we employ a decomposition and branch-and-cut framework recently introduced in the literature and discuss problem-specific enhancements of this approach. We report on our computational experiments designed to benchmark this decomposition branch-and-cut algorithm.

Publication
Proceedings of the 2013 Industrial and Systems Engineering Research Conference (ISERC 2013)