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Abstract

We introduce a new graph-theoretic paradigm called a graph signature that describes per-
sistent patterns in a sequence of graphs. This framework is motivated by the need to detect
subgraphs of significance in temporal networks, e.g., social and biological networks that evolve
over time. Because the subgraphs of interest may not all “look alike” in the snapshots of
the temporal network, the framework deems a subgraph to be persistent if it satisfies one of
several preselected properties in each snapshot of a consecutive subsequence. The persistency
requirement is parameterized by the length of this subsequence. This discrete mathematical
framework can be viewed more broadly as a way to generalize classical graph properties and
invariants associated with a single graph to a sequence of graphs.

In this introductory article, we formulate the graph signature identification problem as a
mixed-integer program and propose an algorithmic framework based on dynamic programming.
This methodology is applicable to any collection of mixed-integer representable graph properties.
We also demonstrate how this framework can be tailored to exploit property-specific decompo-
sition and scale reduction techniques through three different computational case-studies. Our
experiments show that the dynamic programming algorithm solves this problem across most
instances in our test bed to optimality. Moreover, for the instances in our test bed, the optimal
signature sizes are comparable to those of their static counterparts, suggesting that our new
framework can identify subgraphs of significance in complex dynamic networks.

1 Background

Cluster detection in social and biological networks involves modeling clusters of interest using
cliques or their graph-theoretic generalizations. Clusters in social networks may represent cohesive
social subgroups and could be identified for use in recommender systems, marketing campaigns,
community detection, and influence maximization (Alhajj & Rokne, 2018). In biological networks
like protein-protein interaction networks, gene co-expression networks, and metabolic networks, de-
tection of clusters or other types of network motifs is commonly used to identify functional modules
that could represent protein complexes, transcriptional modules, or signaling pathways (Junker &
Schreiber, 2008). Detection methods seek to find a subset of vertices that satisfy the requirements
of the selected graph model, typically one that optimizes some direct or indirect measure of fitness
like cardinality, weight, or other attributes.

Broadly, optimization approaches to mining graph models of data predominantly share two
common characteristics.
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(a) They identify cohesive subgraphs, critical nodes, most central actors, or other graph structures
of interest in a single graph snapshot (Balasundaram et al., 2011; Walteros & Pardalos, 2012;
Veremyev et al., 2014; Vogiatzis et al., 2015).

(b) They model structures of interest using a single graph-theoretic concept like clique, domination,
centrality, connectivity, etc., (Seidman & Foster, 1978; Kelleher & Cozzens, 1988; Borgatti et al.,
1990; Freeman, 1992).

The motivating applications in social and biological network analysis as well as in other areas
often yield time-series data, which in turn corresponds to a sequence of graphs over time in which the
vertices and the edges change (Hu et al., 2005; Li et al., 2011; Hellmann & Staudigl, 2014; Paranjape
et al., 2017). Independently analyzing each snapshot graph ignores dynamic characteristics like the
persistence of a pattern in time. It is also necessary to accommodate the possibility that the vertex
subsets of interest could induce subgraphs that appear very different over time, resembling one of
many different graph-theoretic structures like a clique, a dense subgraph, or a sparse low-diameter
subgraph as the interactions (edges) become active or dormant with time.

Works that recognize these challenges and at least partially address them have appeared in lit-
erature. A popular approach, with a large body of related work, involves finding frequent subgraphs
in multiple graphs (Jiang et al., 2013), similar to the use of frequently occuring network motifs in
social and biological network analysis (Paranjape et al., 2017). The sequence of graph snapshots is
referred to as relational graphs or transactional graphs in this literature. In this setting, one seeks
to find a subgraph, typically required to be dense or connected, that is recurrent, i.e., present in at
least a minimum number of snapshots; or alternately, find a subgraph of an auxiliary graph (that
summarizes the information) whose edges are present in at least a minimum number of snapshots
(cf. Kuramochi & Karypis (2005); Hu et al. (2005); Yan et al. (2005)). However, counting occur-
rences alone may not be a satisfactory surrogate for persistency, as it is insensitive to the ordering
of the snapshots.

More recently, some authors have taken the following approach to find ∆-cliques in temporal
networks (Viard et al., 2016; Himmel et al., 2017). Consider a subset of vertices C and an interval
of consecutive graph snapshots I that share a common vertex set. The subset C is called a ∆-clique
in I if every pair of vertices in C are adjacent in at least one snapshot out of every ∆ consecutive
snapshots in I. In other words, any pair of vertices in a ∆-clique over an interval of snapshots
cannot be non-adjacent for more than ∆ consecutive snapshots. The general approach here is to
impose a minimum periodicity in the “atomic” property (required of each vertex, edge, vertex-pair
etc.) that the subgraph must satisfy in the static counterpart. Although when ∆ > 0, it is possible
that C may not be a clique in any graph in the subsequence I, when ∆ = 0, C is a clique in every
snapshot in I. Hence, this approach is related to the notion of a persistent clique signature we
consider in Section 5. Viard et al. (2016) propose an algorithm to enumerate all maximal ∆-cliques,
where maximality is by inclusion with respect to both C and I. Viard et al. (2018) generalize their
∆-clique model for instantaneous link streams to enumerating maximal cliques that are persistent
over a duration, an approach even more closely related to the persistency requirements of graph
signatures we introduce in this article. However, we also require that I be of a user-specified
minimum length.

Although our terminology was inspired by a different source (Defense Advanced Research
Projects Agency, 2011), it is interesting to note that Viard et al. (2016) also remark that “In
real-world situations . . . ∆-cliques are signatures [emphasis added] of meetings, discussions, or dis-
tributed applications for instance” (p. 245). This is also the reason for many traditional applications
of graph-based data mining increasingly needing network models and algorithms that explicitly cap-
ture the temporal aspect (Hu et al., 2005; Li et al., 2011; Hellmann & Staudigl, 2014). It is therefore
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unsurprising to see a spurt in recent literature on this topic. Bentert et al. (2019) have recently
extended the ∆-clique approach to ∆-k-plexes, based on a clique relaxation model for cohesive
social subgroups in social network analysis (Seidman & Foster, 1978). The recent work of Latapy
et al. (2018) to generalize many basic graph theory concepts to deal with temporal networks, or
what they refer to as stream graphs, is also of interest in this context.

Another branch of recent literature closely aligned with the modeling approach we introduce in
Section 2 introduces the following ideas. Jethava & Beerenwinkel (2015) considered the problem of
finding a densest common subgraph (DCS) in a sequence of graphs with a common vertex set. That
is, a subset of vertices that maximizes the minimum average degree1 over the subgraphs it induces
in every graph in the sequence. Semertzidis et al. (2019) extend this idea in two directions: first,
they introduce four variants of the DCS problem by considering average or minimum degree of the
subgraph induced by a subset of vertices, aggregated into an objective function by considering the
minimum or average over all the snapshots in the sequence; second, they introduce a relaxation
that requires the subset of vertices to optimize one of the measures of density over a subsequence
of k snapshots. It is important to note that the k snapshots need not be consecutive in their frame-
work. This characteristic, inspired by thinking not unlike that underlying the frequent subgraph
models, also differentiates their approach from ours. The four variants introduced by Semertzidis
et al. (2019) were further investigated by Charikar et al. (2018), with both studies offering greedy
algorithms, approximation and complexity results for these problems.

In the next section, we introduce a new general-purpose combinatorial optimization framework
for identifying structures of interest in temporal graphs (digraphs or multigraphs). Our frame-
work is distinguishable from prevailing approaches in how the need for persistency and model
adjustability is captured when analyzing temporal networks. In particular, we propose to model
the signature problem using mixed-integer programming, and develop generic formulations and a
dynamic programming-based algorithm to solve the resulting optimization problems.

The remainder of this paper is organized as follows. Section 2 formally describes the problem
of interest and highlights some of its salient characteristics. Integer programming formulations
and a dynamic programming approach for the generic problem are introduced in Sections 3 and 4,
respectively. Specific model case-studies are undertaken in Sections 5, 6, and 7, presenting problem-
specific computational enhancements for solving the associated optimization problems. Section 8
presents the results of our computational experiments to assess and compare the performance of the
solution approaches introduced. The article is concluded with some remarks on future extensions
in Section 9.

2 Persistent Graph Signatures

Given a positive integer a, we use the notation [a] := {1, . . . , a} to compactly denote index sets.
Suppose we are given a non-empty finite collection of graph properties applicable to vertex subsets,
denoted by P, and a sequence of graphs denoted by G := (Gt, t ∈ [T ]). We often think of [T ] as
a discretized time-horizon of interest, although this interpretation is not strictly required. Each
graph Gt = (V t, Et) is a subgraph of a universal graph G0 = (V 0, E0) of order n with V 0 := [n].
Note that we have not made an explicit assumption as to whether Gt is a “simple” graph, free from
loops and parallel edges, a digraph, or a (directed) multigraph. Naturally in the last case we will
also need a mapping from edges to end-points to describe parallel edges.

1Note that the authors define as density, the number edges in the induced subgraph divided by the order, i.e.,
half the average degree of the induced subgraph. Hence, the density metric they optimize is proportional to average
degree of the induced subgraph.
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(e) G5

Figure 1: A sequence of T = 5 snapshot graphs. The size of the maximum 3-persistent 2-club is
four, corresponding to {1, 2, 3, 10}.

Definition 1. Consider a graph sequence G, a collection of graph properties P, a positive integer
τ , and a subset of vertices S ⊆ V 0. We say that S is a τ -persistent P-signature in G if there exists a
subsequence (Gt, . . . , Gt+τ−1) of G such that, in every graph in this subsequence, subset S satisfies
at least one property π ∈ P. Succinctly, we state that S satisfies condition Σ(G,P, τ).

The graph signature identification problem (GSIP) is to find a τ -persistent P-signature S∗ ⊆ V 0

in G that maximizes an objective function w : 2V
0 −→ R+. In other words, the set S∗ solves the

following optimization problem (1) and we say S∗ is an optimal graph signature:

GSIP: σ(G,P, τ) := max
S⊆V 0

{w(S) | S satisfies Σ(G,P, τ)} . (1)

In order to illustrate an optimal graph signature, let us consider the example where P =
{2-Club}. A 2-club is a subset of vertices in which non-adjacent pairs of vertices are required to
have a common neighbor in the subset. This is a popular model for cohesive subgroups in social
network analysis as it represents a group of people in which every pair of strangers have a mutual
friend. Note that every clique is also a 2-club. Suppose that the objective function is w(S) = |S|,
the cardinality of the subset of vertices, and let τ = 3. In the graph sequence G = (G1, G2, . . . , G5)
in Figure 1, the optimal graph signature is S∗ = {1, 2, 3, 10} with an optimal value of σ(G,P, τ) = 4.
Observe that in this example there are larger 2-clubs, such as {1, 3, 9, 10, 11, 12} in snapshot G1

and {4, 5, 6, 7, 8} in snapshot G2. These subsets, however, do not exhibit persistency for more than
one period.

The first noteworthy modeling characteristic of a graph signature is the assumption that multiple
properties of interest may exist, as captured by the set P. For instance, a subset of vertices may
induce a clique in most of the graphs in a subsequence of length τ , but it may be missing a few
edges in some of them. However, when it fails to satisfy the definition of a clique in some of the
snapshots in the subsequence, it may still satisfy the definition of a k-plex for some positive integer
k, which is a hereditary, degree-based clique relaxation that allows for up to k − 1 non-neighbors
in the subgroup for every vertex (Seidman & Foster, 1978; Balasundaram et al., 2011). Such a
signature could be detected by defining P as a 3-plex for instance, because every clique is a 2-plex
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and every 2-plex is a 3-plex. Parameterized graph properties like clique relaxations (Pattillo et al.,
2013) are natural candidates for P. Alternatively, P could include incomparable properties such
as minimum edge density of 70% and maximum diameter of two, i.e., P = {0.7-Quasiclique,
2-Club}. This type of P may be necessary, for instance, in covert social networks in which the
ties between the majority of actors may become dormant when all communication happens via a
central actor. Then, the density of the cohesive social subgroup might dramatically drop, but the
group may continue to induce a low-diameter subgraph.

The second modeling characteristic that is important is the notion of persistency. Although we
permit the vertex subset S to satisfy one of many properties and not necessarily the same property
over time, it must do so continuously over a consecutive subsequence of some minimum length, in
order to be deemed interesting, i.e., a signature that is persistent over time. By parameterizing
this minimum length using τ , we can relax or restrict the persistency requirement as demanded by
the application.

These key ideas make the overall framework of graph signatures potentially more useful than
approaches seeking a cluster that satisfies a single graph property in a single graph snapshot.
Moreover, our framework complements and extends many of the prevailing approaches for analyzing
temporal networks reviewed in Section 1. Mathematically, this framework is flexible and adjustable,
and potentially has greater applicability in different domains including social and biological network
analysis.

3 GSIP Formulations

We introduce additional notations and assumptions before formulating the generic GSIP as a math-
ematical program. Analogous to problem (1), for any subsequence G̃ of G, we define σ(G̃,P, τ) by
only considering those graphs Gt of G that appear in the subsequence G̃. If P = {π}, a singleton,
we use simpler notations to denote the invariants, e.g., σ(G, π, τ) instead of σ(G, {π}, τ). We say a
vector x ∈ {0, 1}n is an incidence vector of a subset S ⊆ V 0, if S = {u ∈ V 0 | xu = 1}. We denote
this bijection as x ↔ S. In this initial study of the problem, we make the following simplifying
assumptions:

A-1. For every π ∈ P and t ∈ [T ], we assume that S satisfies property π in Gt if and only if
there exists a matrix At

π and a vector btπ such that At
πx ≤ btπ for x ↔ S. In other words,

there exists a mixed integer linear programming (MILP) formulation for each property π ∈ P,
projected onto the x-variable space if necessary, so that the collection of feasible incidence
vectors denoted by Qtπ satisfies the following equation:

Qtπ =
{
x ∈ {0, 1}n | At

πx ≤ btπ
}
.

A-2. There exists a diagonal matrix of “big-M” values denoted by M t
π of appropriate dimension

such that At
πx ≤ btπ + M t

π1 holds for every x ∈ {0, 1}n, where 1 is a vector of ones of
appropriate dimension.

A-3. The objective we wish to maximize is linear, i.e. w(S) = w>x for x↔ S.

In addition to the incidence vector x that serves as a vector of decision variables, we also
introduce the binary indicator variables zt for each t ∈ [T ] and ytπ for each t ∈ [T ] and π ∈ P.
Under the foregoing assumptions, the generic GSIP can be formulated as the following nonlinear
optimization problem in binary variables.
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GSIP-F1: σ(G,P, τ) = maxw>x (2a)

s.t. At
πx ≤ btπ + M t

π(1− ytπ1) ∀t ∈ [T ], π ∈ P (2b)∑
t∈[T−τ+1]

t+τ−1∏
j=t

zj ≥ 1 (2c)

zt ≤
∑
π∈P

ytπ ∀t ∈ [T ] (2d)

xu ∈ {0, 1} ∀u ∈ V 0 (2e)

ytπ ∈ {0, 1} ∀t ∈ [T ], π ∈ P (2f)

zt ∈ {0, 1} ∀t ∈ [T ] (2g)

Consider a feasible solution (x, y, z) to formulation (2), which we henceforth refer to as GSIP-
F1. Constraint (2b) implies that if ytπ = 1, then x ∈ Qtπ. Constraint (2c) requires that at least τ
consecutive zt variables must be at one in any feasible solution. Constraint (2d) enforces that if
zt = 1, then at least one of the ytπ variables for π ∈ P must be one. This along with constraint (2b)
ensures that if zt = 1, then S ↔ x satisfies some property π ∈ P in Gt. Therefore, x ∈ {0, 1}n is a
feasible solution of formulation (2) if and only if S ↔ x satisfies condition Σ(G,P, τ).

If P = {π}, a singleton, the definition and the values of variables ytπ and zt coincide. In other
words, ytπ = zt for every t ∈ [T ] for a feasible solution (x, y, z). In this case, we can replace ytπ with
zt in formulation (2), drop the redundant constraints, and obtain the simplified formulation (3),
which we will call GSIP-F2. Note that we drop the subscript π to make it apparent that only one
property is involved.

GSIP-F2: σ(G, π, τ) = maxw>x (3a)

s.t. Atx ≤ bt + M t(1− zt1) ∀t ∈ [T ] (3b)

(2c), (2e), (2g)

GSIP-F1 and GSIP-F2 may be infeasible if there is no τ -persistent graph signature in G.
We follow the convention that σ(G,P, τ) and σ(G, π, τ) are −∞ whenever the formulations are
infeasible. Generally, if at least one property in P is satisfied by the empty set, by a single vertex
(e.g., clique is in P), or the universal vertex set V 0 (e.g., domination or vertex cover is in P), the
formulations should always have a feasible solution.

4 GSIP and Dynamic Programming

Smaller instances of the graph signature problem can be solved using an off-the-shelf MILP solver
using a linearization of GSIP-F1 or GSIP-F2, as applicable. However, the number of variables,
constraints, and non-zeros of such monolithic formulations increase linearly as the number of time
periods T increases, rendering them impractical for large values of T , even on moderately sized
graphs. Alternatively, we could use a dynamic programming approach, which involves solving
T − τ + 1 smaller subproblems in a moving-window like fashion by only considering τ consecutive
time-periods for each subproblem.

Specifically, consider t = τ, τ + 1, . . . , T , and define f t as the value of the maximum weight
τ -persistent signature until time t, i.e., f t := σ(Gt,P, τ), where Gt := (Gr, r ∈ [t]). Then, it is
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readily seen that,

f t = max
{
f t−1, σ(Gt,τ ,P, τ)

}
for t = τ + 1, . . . , T , (4)

where Gt,τ is the sequence of graphs defined by Gt,τ := (Gr, r ∈ {t−τ+1, . . . , t}). As a consequence,
we can compute fT = σ(G,P, τ) by first computing f τ , noting that f τ = σ(Gτ ,P, τ), and then
using the recursion (4) to compute f r from period r = τ + 1 until period r = T . Hereafter, we refer
to this dynamic programming recursion as the Moving-Window (MW) method.

In the MW method, σ(G,P, τ) is computed by solving T−τ+1 different optimization problems.
However, these problems do not need the zt variables or the nonlinear constraints (2c) that GSIP-
F1 and GSIP-F2 use. Indeed, formulations (5) and (6) presented next, which we refer to as
GSIP-F1-MW and GSIP-F2-MW are valid for σ(Gt,τ ,P, τ) and σ(Gt,τ , π, τ), respectively. In
addition, GSIP-F2-MW does not require the use of “big-M” coefficients in contrast to formulation
GSIP-F2.

GSIP-F1-MW:

σ(Gt,τ ,P, τ) = max w>x (5a)

s.t. Ar
πx ≤ brπ + M r

π(1− yrπ1) ∀r = t− τ + 1, . . . , t, π ∈ P (5b)∑
π∈P

yrπ ≥ 1 ∀ r = t− τ + 1, . . . , t (5c)

xu ∈ {0, 1} ∀u ∈ V 0 (5d)

yrπ ∈ {0, 1} ∀π ∈ P; r = t− τ + 1, . . . , t (5e)

GSIP-F2-MW: σ(Gt,τ , π, τ) = max w>x (6a)

s.t. Arx ≤ br ∀r = t− τ + 1, . . . , t (6b)

xu ∈ {0, 1} ∀u ∈ V 0 (6c)

Formulation (6), or more precisely the underlying optimization problem when τ = 2 is known as
the cross-graph mining problem in the graph-based data mining literature (Jiang & Pei, 2009; Pei
et al., 2005). GSIP-F2-MW and GSIP-F1-MW can therefore be viewed as its generalization
over multiple graphs and multiple graph properties.

Given the popularity of cliques as the gold-standard for modeling “ideal” clusters in graph-based
data mining (Cook & Holder, 2006) as well as its position as the benchmark for modeling cohesive
subgroups in social networks (Wasserman & Faust, 1994), we consider clique signatures a canonical
graph signature identification problem. This is the first special case we consider in Section 5.
Then in Section 6 we consider the 2-club model briefly introduced in Section 2, a distance-based
clique relaxation used to model cohesive social subgroups. Unlike cliques, the 2-club property is
not preserved under vertex deletions in general (i.e., it is not hereditary on induced subgraphs)
and requires decomposition ideas specifically tailored to this problem. In contrast to cliques and
2-clubs, finding a maximum k-core in a graph is a polynomial-time solvable problem (Seidman,
1983). In Section 7, we consider k-core signatures and introduce a combinatorial polynomial-time
algorithm for the problem.

In the remainder of this article, we make the following additional assumptions.

A-4. The vertex set is fixed across all time periods, thus V t = V 0 for all t ∈ [T ]; we lose no
generality by doing so for the properties we consider.
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A-5. For each period t ∈ [T ], the graph Gt = (V t, Et) is undirected, unweighted, and without loops
or parallel edges. Hence,

Et ⊆
(
V t

2

)
:=
{
{u, v}

∣∣ u, v ∈ V t, u 6= v
}
.

A-6. We focus on the case of singleton P.

A-7. We focus on maximum cardinality τ -persistent signatures. That is, we set the objective vector
w = 1.

5 Clique Signatures

This section discusses how persistent clique signatures can be found. We begin with a well-known
formulation of the maximum clique problem, which forms the basis for the formulations used in
the MW method. Then, we show how the clique signature problem is equivalent to the maximum
clique problem on an auxiliary graph and how the MW method can be enhanced by exploiting this
fact.

Incidence vectors of cliques in Gt, for a given time period t ∈ [T ], can be formulated using the

well-known complement edge constraints (7). Denoting the complement graph by G
t

= (V t, E
t
),

where E
t

:=
(
V t

2

)
\ Et, we can write these constraints as,

xi + xj ≤ 1 ∀{i, j} ∈ Et. (7)

Constraints (7) can be used in GSIP-F2 and GSIP-F2-MW by noting that At is precisely the

edge-vertex incidence matrix of the complement graph G
t

and bt is a vector of ones of appropriate
size.

Applying the MW method (4) to find a τ -persistent clique signature requires repeatedly finding
a maximum clique over τ consecutive graphs in G. For a given time period t ∈ {τ, . . . , T}, this can
be accomplished by solving formulation (6), which in this case reduces to the following.

σ(Gt,τ ,Clique, τ) = max 1>x (8a)

s.t. xi + xj ≤ 1 ∀{i, j} ∈
t⋃

r=t−τ+1

E
r

(8b)

xi ∈ {0, 1} ∀i ∈ V 0 (8c)

Observe that formulation (8) is precisely the complement edge formulation of the maximum clique
problem of the intersection graph Ht,τ , where,

Ht,τ =

(
V 0,

t⋂
r=t−τ+1

Er

)
.

In other words, finding a maximum clique signature on Gt,τ reduces to finding the maximum clique
on the corresponding intersection graph. By using the MW method (4), the maximum clique
signature of G can be computed by solving T −τ +1 maximum clique problems on the (potentially)
sparser graphs Ht,τ for each t = τ, . . . , T . We summarize this relationship in Proposition 1.
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Proposition 1. Consider a sequence of graphs G = (Gt, t ∈ [T ]) and a positive integer τ . A subset
of vertices S is a τ -persistent clique signature in G if and only if there exists a t ∈ {τ, . . . , T} such
that S is a clique in the intersection graph Ht,τ .

Proposition 1 allows us to exploit well known computational methods available for the maximum
clique problem (Verma et al., 2015; Rebennack et al., 2011; Abello et al., 1999). Specifically, we
dynamically apply scale reduction techniques such as core peeling and community peeling to the
intersection graph to enable a general-purpose branch-and-cut based MILP solver to reduce the
time it takes to find a maximum clique.

Core peeling for clique signatures works as follows (Abello et al., 1999). If at time t ∈ {τ +
1, . . . , T} we know that f t−1 = ` (see Equation (4)), then in Ht,τ we are only interested in cliques
of size ` + 1 or more. Hence, we can recursively delete any vertex that has degree less than `.
In other words, we can find the `-core of Ht,τ , the unique maximal subgraph of minimum degree
` (Seidman, 1983), and solve the maximum clique problem on the `-core. If the `-core is a null
graph, then Ht,τ does not have a clique of size at least `+ 1 and we can set f t = `. However, if the
`-core is not null, we apply community peeling, as described next.

We know that any pair of vertices in a clique of size ` + 1 or more should have at least ` −
1 common neighbors. Hence, we can recursively delete every edge in the `-core of Ht,τ whose
endpoints do not satisfy this condition. The resulting graph in which the endpoints of every edge
have at least ` − 1 common neighbors is called an (` − 1)-community (Verma et al., 2015). If the
resulting graph is empty, then the clique of size ` is maximum, that is, f t = `; otherwise, we solve
the maximum clique problem on the resulting (` − 1)-community graph. We apply core peeling
before community peeling based on past computational studies that demonstrate it is more effective
to core-peel a graph before applying community peeling (Verma et al., 2015).

Besides peeling, an extended formulation can be used to facilitate the MILP solver to recognize
and exploit the fact that the clique must be contained within a connected component. We can
extend the complement edge formulation (8) by introducing new binary variables that indicate the
component in which the clique is present. This componentwise formulation typically results in
fewer non-zero coefficients when compared with a formulation that ignores the fact that the graph
is disconnected. In formulation (9), we use the short form ∀(i, j, C) to refer to every connected
component C in the intersection graph H of interest and every distinct pair of non-adjacent vertices
in component C. Let C denote the collection of vertex sets of each connected component of H,
then the formulation is as follows:

ω(H) = max 1>x (9a)

s.t. xi + xj ≤ 1 ∀(i, j, C) (9b)∑
C∈C

ξC ≤ 1 (9c)

xi ≤ ξC ∀i ∈ C and C ∈ C (9d)

xi ∈ {0, 1} ∀i ∈ V (H) (9e)

ξC ∈ {0, 1} ∀C ∈ C. (9f)

Algorithm 1 describes our overall approach that implements the recursion (4) for finding persis-
tent clique signatures. In step 1 of Algorithm 1, a maximal clique is found by recursively selecting
and adding a vertex of maximum degree in the graph induced by candidate vertices, i.e., those
that are adjacent to all the vertices in the current clique (Bomze et al., 1999). The initial heuristic
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solution is used in the scale reduction techniques for the first window, and the best solution is
updated and used in subsequent windows.

Algorithm 1: (MW-CLQ) Finding a maximum clique signature using the moving win-
dow method.

Input: G = (Gt, t ∈ [T ]), τ ≥ 1, ` = 0.
Output: A maximum cardinality clique signature S.

1 S ← a maximal clique in the intersection graph Hτ,τ

2 for t = τ, . . . , T do
3 `← |S|
4 Ht,τ ← CorePeel(Ht,τ , `)
5 Ht,τ ← CommunityPeel(Ht,τ , `)
6 S′ ← solve for a maximum clique in Ht,τ using formulation (9)
7 S ← arg max{|S|, |S′|}
8 return S

6 2-Club Signatures

Although cliques describe an ideal notion of clusters or cohesive social subgroups, in graphs built
from error-prone or incomplete data a cluster of significance might not resemble a clique in every
snapshot of the graph sequence. Therefore, even though these clusters might be ‘almost’ cliques
for many consecutive periods, they cannot be considered τ -persistent cliques. In order to capture
signatures of this type, we can include one or more parameterized graph-theoretic clique relaxations
in P (Balasundaram & Pajouh, 2013; Pattillo et al., 2013). In this introductory article we restrict
our attention to a well-known distance-based clique relaxation, the 2-club model (Shahinpour &
Butenko, 2013).

Definition 2 (Alba (1973); Mokken (1979); cf. Balasundaram et al. (2005)). Given a graph
G = (V,E), a subset of vertices S is called a 2-club in G if every distinct pair of vertices are either
adjacent, or have a common neighbor inside S.

Clearly, the 2-club model generalizes cliques by allowing non-adjacent pairs of vertices in the
cluster as long as they have a common neighbor in the cluster. As noted before, this model is well
suited for applications in which cohesive social subgroups can contain strangers as long as they have
a mutual friend, the so-called friend-of-a-friend cluster. It has found use in a variety of domains as
a result (Miao & Berleant, 2004; Terveen et al., 1999).

As a model for a τ -persistent cohesive subgroup signature, the 2-club is more flexible because it
not only includes cliques but sparser subgroups as well (e.g., a vertex and all its neighbors meet the
requirement). In this article we only consider 2-club signatures, noting that both cliques and 2-clubs
are special cases of a more general distance-based clique relaxation called an s-club (Shahinpour
& Butenko, 2013). Our approach to finding 2-club signatures can be extended to find τ -persistent
s-club signatures using prevailing approaches for solving the maximum s-club problem (Salemi &
Buchanan, 2020; Moradi & Balasundaram, 2018).

In order to provide an MILP formulation for 2-clubs, we use the “common neighbor” formu-
lation (Bourjolly et al., 2002). Let NGt(i) denote the set of neighbors of a vertex i ∈ V t, i.e.,
NGt(i) :=

{
j ∈ V t

∣∣ {i, j} ∈ Et}. Then, a set S ↔ x is a 2-club in Gt if it satisfies the common
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neighbor constraints (10):

xi + xj −
∑

k∈NGt (i)∩NGt (j)

xk ≤ 1 ∀{i, j} ∈ Et. (10)

It is worth noting that a naive extension of the intersection graph approach used with clique
signatures is not valid for 2-club signatures. Indeed, a set of vertices can be a 2-club signature
in Gt,τ without being one in the intersection graph Ht,τ (see Figure 2). Consequently, we would
restrict ourselves (incorrectly) if we only seek 2-clubs in Ht,τ . Recall that it was the equivalence
between the maximum τ -persistent clique signature problem and the maximum clique problem on
the intersection graph Ht,τ that permitted us to exploit established computational ideas that are
known to be effective for solving the maximum clique problem. Although such an equivalence is
not readily available, we can still take advantage of preprocessing and decomposition techniques by
considering a relaxation of the τ -persistent maximum 2-club signature problem.

Consider the graph in Figure 3. Clearly, the filled vertices do not form a 2-club as the induced
subgraph has two vertices that do not share a common filled neighbor, highlighting that the 2-club
property is not hereditary on vertex induced subgraphs. The filled vertices form what is called a
distance-2-clique, or in short, a 2-clique. In order to formalize this notion, let distG(u, v) be the
distance between two vertices u and v in G. That is, distG(u, v) is the minimum length of a path
(measured in number of edges) connecting them in G.

Definition 3 (Luce (1950); cf. Balasundaram et al. (2005)). Given a graph G = (V,E), a subset of
vertices S is called a 2-clique in G if every pair of vertices u, v ∈ S satisfy the condition distG(u, v) ≤
2.

Clearly, every 2-club is a 2-clique, but not vice versa. Furthermore, a subset of vertices S
is a 2-clique in G = (V,E) if and only if S is a clique in the square graph G̃ = (V, Ẽ), where
Ẽ := {{u, v} | 1 ≤ distG(u, v) ≤ 2}. Because a τ -persistent 2-club signature S must be a 2-club
in every graph in Gt,τ for some t = τ, . . . , T , we know that S must also be a 2-clique in every

1 2

3

1 2

3

(a) Graphs G1 and G2

1 2

3

(b) Intersection graph H2,2

Figure 2: This example illustrates that a 2-club signature is not necessarily a 2-club in the inter-
section graph. The set {1, 2, 3} is a 2-persistent 2-club signature in G = (G1, G2), but it is not a
2-club in the intersection graph.

Figure 3: The filled vertices form a distance-2-clique, but not a 2-club.
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graph in Gt,τ , or equivalently a clique in the square of every graph in Gt,τ . In other words, we have
established the following proposition.

Proposition 2. Consider a sequence of graphs G = (Gt, t ∈ [T ]) and a positive integer τ . Define
the square intersection graph J t,τ as,

J t,τ :=

(
V 0,

t⋂
r=t−τ+1

Er,2

)
, (11)

where Er,2 := {{u, v} | 1 ≤ distGr(u, v) ≤ 2}. A subset of vertices S is a τ -persistent 2-clique
signature in G if and only if there exists a t = τ, . . . , T such that S is a clique in the square
intersection graph J t,τ .

Proposition 2 forms the basis for Algorithm 2 for finding a maximum cardinality τ -persistent
2-club signature in Gt,τ . Notice that this algorithm follows the same overall steps as Algorithm 1,
with some of the steps requiring further elaboration as discussed next.

Algorithm 2: (MW-2CLB) Finding a maximum cardinality 2-club signature using the
moving window method.

Input: G = (Gt, t ∈ [T ]), τ ≥ 1, ` = 0.
Output: A maximum cardinality 2-club signature S.

1 v ← arg max{|NHτ,τ (u)| | u ∈ V 0}
2 S ← {v} ∪NHτ,τ (v)
3 for t = τ, . . . , T do
4 `← |S|
5 J t,τ ← CorePeel(J t,τ , `)
6 J t,τ ← CommunityPeel(J t,τ , `)
7 S′ ← solve for a maximum τ -persistent 2-club in Gt,τ using delayed generation of

common neighborhood constraints applied to the maximum clique master relaxation
formulation (9) on J t,τ

8 S ← arg max{|S|, |S′|}
9 return S

In step 7 of Algorithm 2 we start by solving the master relaxation—the maximum clique problem
on the square intersection graph J t,τ—using a general purpose branch-and-cut solver. (Observe
that by Proposition 2, such a maximum clique is a τ -persistent 2-clique on Gt,τ .) Whenever an
integral solution is encountered, we must verify if this τ -persistent 2-clique signature in Gt,τ is
indeed a τ -persistent 2-club signature in Gt,τ . If it is, then the corresponding node of the search
tree can be pruned by feasibility; if not, we must add constraints that cut off this infeasible integral
solution.

The infeasible solution can be removed by noting that it must violate some common neighbor
constraint (10) for some graph Gr in Gt,τ . We add the first violated constraint we detect into
the “lazy” constraint pool, and the node subproblem is re-solved. This type of delayed constraint
generation has been found to be effective in several past computational studies for the maximum
s-club problem (Salemi & Buchanan, 2020; Moradi & Balasundaram, 2018; Lu et al., 2018). We
therefore use this approach, instead of directly solving a 2-club MILP formulation based on (10).

Finally, the effectiveness of the very first application of core and community peeling steps relies
on having a good initial heuristic solution. Because a 2-club that exists in the intersection graph
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Hτ,τ exists in every graph in the sequence (Gt, t ∈ [τ ]), we use a vertex of maximum degree and its
neighbors in Hτ,τ as an initial heuristic solution in step 2 of Algorithm 2.

7 Core Signatures

This section focuses on exploring performance of the MW method on a graph property that can
be computed in polynomial time. Specifically, we discuss the persistent k-core signature problem,
i.e., we set P = {k-Core}. As opposed to the maximum clique and 2-club problems, the unique
maximal k-core of a graph G = (V,E) can be identified in O(|E| + |V |) time (Matula & Beck,
1983). In this section, we describe an algorithm that runs in linear time in the size of the input
and finds the persistent k-core of a graph sequence. This algorithm can then be used in the MW
method to find a k-core signature of G.

Definition 4 (cf. Seidman (1983)). Given a graph G = (V,E), we call a subset of vertices S a
k-core in G if the minimum degree of the induced subgraph G[S] is at least k.

In light of the above definition, we define a persistent k-core of a window Gt,τ as the subset
of vertices S that forms a k-core in every graph in the sequence. We define a persistent k-core
as a vertex subset (rather than a subgraph as is the convention) because the subgraphs induced
by S are not necessarily identical even though they form a k-core in each graph of the window.
Additionally, we do not require maximality in the definition of a k-core because Gt,τ contains a
unique S that is a maximal persistent k-core, as in the single-graph counterpart. Indeed, if S and
S′ are distinct persistent k-cores in Gt,τ , then S ∪S′ is a persistent k-core in Gt,τ as well. Also note
that the unique maximal persistent k-core S in Gt,τ does not need to be a maximal k-core in each
graph in the sequence.

Similarly to the clique and 2-club properties, the k-core property admits an MILP formulation.
A set S ↔ x is a k-core in Gt if and only if it satisfies the following constraints:∑

k∈NGt (i)

xk ≥ kxi ∀i ∈ V. (12)

The MILP reformulation could be used to solve the signature problem in a similar manner as cliques
and 2-clubs. However, for this setting we describe an exact combinatorial algorithm we refer to
as MW-CORE, see Algorithm 3, that can be used to compute a persistent k-core of a graph
sequence. This algorithm runs in time that is linear in size of the input (i.e., the size of the graphs
in the sequence Gt,τ ).

MW-CORE works by recursively deleting vertices with degree less than k in any graph in the
sequence. The queue Q in Algorithm 3 stores the vertices that are going to be deleted, while the
Boolean vectors deleted and inqueue keep track of the vertices that have been deleted from all
the graphs (common vertex set V 0) and the vertices that have been added to Q, respectively. For
each graph Gi in the sequence, vector degi maps each vertex to its degree in graph Gi (step 5).
Once a vertex v is detected to have degree less than k in any graph, it is added to Q if it is not
already in G, and inqueue[v] is updated to true (steps 8 and 18). The inqueue entries serve as an
indicator that prevents any vertex from being appended to Q more than once. When a vertex v in
the front of Q is selected and removed (popped out of Q), the boolean vector deleted[v] is updated
to true for that vertex (step 11), and the degree of each of its remaining neighbors in each graph
in the sequence is decreased by one (step 15). At termination, either all vertices are deleted (the
persistent k-core is empty), or the surviving vertices correspond to the unique maximal persistent
k-core of the graph sequence.
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Algorithm 3: (MW-CORE) Find the maximal persistent k-core of a graph sequence

Input: A graph sequence (G1, G2, ..., Gτ ) on a common vertex set V 0.
Output: The maximal persistent k-core.

1 queue Q← ∅
2 for v ∈ V 0 do
3 deleted[v]← false, inqueue[v]← false

4 for i = 1, 2, . . . , τ do

5 degi[v]← |NGi(v)|
6 if inqueue[v] = false and degi[v] < k then
7 Q.push(v)
8 inqueue[v] = true

9 while Q 6= ∅ do
10 v ← Q.pop()
11 deleted[v]← true

12 for i = 1, 2, . . . , τ do
13 for u ∈ NGi(v) do
14 if deleted[u] = false then

15 degi[u]← degi[u]− 1

16 if degi[u] < k and inqueue[u] = false then
17 Q.push(u)
18 inqueue[u]← true

19 return {v ∈ V 0 | deleted[v] = false}

Steps 1–8 of Algorithm 3 can be completed in O(τ |V 0|) time. Since each vertex could be ap-
pended to Q at most once, the while-loop (line 9) executes at most |V 0| times and each execution
takes O(τ |NG0(v)|) time. As a result, the entire while-loop can be completed in O(τ |E0|) time.
Algorithm 3 can therefore be implemented to run in O(τ(|V 0| + |E0|)) time. By applying Algo-
rithm 3 to each window Gt,τ in the MW method, we can find a τ -persistent k-core signature of G
in O(Tτ(|V 0|+ |E0|)) time.

8 Computational Experiments

The goals of our computational study are twofold: (i) to understand the computational gains
achieved by using the MW method, with specialized algorithms and with formulation GSIP-F2-
MW, when compared with directly solving the monolithic formulation GSIP-F2 using a general
purpose MILP solver, and (ii) to compare the solutions found by solving GSIP against those ob-
tained by solving the corresponding problem on a single graph. The computational experiments are
conducted on 64-bit Linuxr compute nodes with dual Intelr “Skylake” 6130 CPUs and 96 GB/768
GB/1.5 TB RAM as needed. All algorithms are implemented in C++ and the MILP formulations
are solved using GurobiTM Optimizer v9.0.1. The C++ implementations of algorithms MW-
CLQ, MW-2CLB, and MW-CORE and the test instances used in this computational study are
available online (Pan et al., 2020a,b,c).

Based on the results of our preliminary experiments, we disabled all Gurobi default cuts to
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achieve better running times. We limit the Gurobi solve-time to two hours per instance when
solving GSIP-F2 formulation (excluding read/write times and model build time). For the MW
method, we test performance of the MW method with the generic GSIP-F2-MW formulation and
with our specialized algorithms (MW-CLQ, MW-2CLB, and MW-CORE). We refer to the MW
method in which we solve the generic GSIP-F2-MW formulation using Gurobi as MW-F2. We
impose a one hour time limit for each window, and terminate the algorithm if two consecutive
windows reach their time limit. As we do not explicitly limit the overall wall-clock time taken by
the MW method, we allow GSIP-F2 more time for some instances on which the MW method
takes longer than two hours; these instances are identified in the individual table notes.

An instance (G,P, τ) for the GSIP consists of a sequence of T graphs. In our experiments we set
T = 10, τ = 3, and P is the singleton corresponding to three contrasting graph-theoretic properties,
namely, clique, 2-club, and k-core. The computational studies are reported in Sections 8.1, 8.2,
and 8.3 based on the discussion in Sections 5, 6, and 7, respectively. In Section 8.4, we test
performance of MW-CLQ, MW-2CLB, and MW-CORE algorithms on relatively long graph
sequences, and we set T = 100 and τ = 10.

For clique signatures, the test bed is generated from the Tenth DIMACS Implementation Chal-
lenge (DIMACS-10) benchmark graphs (Bader et al., 2013) and the Second DIMACS Implemen-
tation Challenge (DIMACS-2) benchmark graphs (Johnson & Trick, 1996). From DIMACS-10
benchmarks we select 12 graphs and from DIMACS-2 we select 14 to be used as the universal graph
G0 = (V 0, E0). The DIMACS-2 instances are typically much denser compared to the DIMACS-10
instances, which are all extremely sparse. Both test beds include graphs based on data from a
variety of fields. As some of the DIMACS-2 benchmarks are extremely challenging even for the
classical maximum clique problem, we selected only instances with fewer than 1000 vertices. The
DIMACS-10 and DIMACS-2 instances are summarized in Tables 1 and 2, respectively. The edge
density is denoted by ρ and expressed as a percentage in these tables. We create a sequence of
graphs Gt = (V t, Et) for t ∈ [10] with identical vertex sets, i.e., V t = V 0 and the edge set Et is
constructed randomly by including an edge in E0 with probability 0.8.

Table 1: DIMACS-10 graphs

G0 |V 0| |E0| ρ(%)

karate 34 78 13.90
lesmis 77 254 8.68
polbooks 105 441 8.08
adjnoun 112 425 6.84
football 115 613 9.35
celegans 453 2025 1.98
email 1133 5451 0.85
polblogs 1490 16715 1.51
netscience 1589 2742 0.22
power 4941 6594 0.05
hep-th 8361 15751 0.05
PGPgiantcompo 10680 24316 0.04

For 2-club signatures, we again use the test bed of DIMACS-10 instances described above.
As most DIMACS-2 instances have diameter two, we generate ten additional benchmark graphs
using the algorithm described in (Bourjolly et al., 2002). This generator is known to produce hard
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Table 2: DIMACS-2 graphs

G0 |V 0| |E0| ρ(%)

C125.9 125 6963 89.85
C250.9 250 27984 89.91
p hat300-1 300 10933 24.38
p hat300-2 300 21928 48.89
p hat300-3 300 33390 74.45
MANN a27 378 70551 99.01
brock400 2 400 59786 74.92
brock400 4 400 59765 74.89
gen400 p0.9 55 400 71820 90.00
gen400 p0.9 65 400 71820 90.00
gen400 p0.9 75 400 71820 90.00
C500.9 500 112332 90.05
dsjc500 5 500 62624 50.20
dsjc1000-5 1000 249826 50.02

instances for the maximum 2-club problem at an edge density of 10% (Pajouh & Balasundaram,
2012). The ten instances are used as universal graphs and the sequence of ten graphs is generated
from each by the same procedure described above. The instances based on the Bourjolly generator
are listed in Table 3.

Table 3: Bourjolly-generator graphs

G0 |V 0| |E0| ρ(%)

bg 1 200 2015 10.10
bg 2 200 1983 9.96
bg 3 200 2014 10.10
bg 4 200 1956 9.83
bg 5 200 2033 10.20
bg 6 200 1971 9.90
bg 7 200 2029 10.20
bg 8 200 2037 10.20
bg 9 200 2009 10.10
bg 10 200 1999 10.00

For k-core signatures, we use the DIMACS-10 test bed identified above and selected temporal
networks listed in Table 4 from the Stanford Network Analysis Project (SNAP) (Paranjape et al.,
2017; Leskovec et al., 2010; Panzarasa et al., 2009). We ignore the orientation of arcs in the directed
networks in our test bed. Each edge in these SNAP instances is associated with a timestamp. We
order the edges chronologically and then divide these time-stamped edges equally into 10 groups,
thus forming the 10-graph sequence.
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Table 4: SNAP temporal networks

G0 |V 0| |E0| ρ(%)

CollegeMsg 1899 13834 0.77
email-Eu-core-temporal 1005 16064 3.18
sx-askubuntu 515280 455689 0.00034
sx-mathoverflow 88580 187986 0.0048
sx-stackoverflow 6024270 28183518 0.00016
sx-superuser 567315 714565 0.00044
wiki-talk-temporal 1140149 2787966 0.00043

8.1 Results for clique signatures

In this section, we focus on clique signatures and compare the performance of Algorithm 1 (MW-
CLQ) against solving MW-F2 directly in the MW method and directly solving the monolithic
GSIP-F2 formulation with constraints (7). In Table 5 we compare the best objective values found
by the three methods and the corresponding running times. Out of the 26 instances, MW-CLQ
reached optimality in 25 instances, while GSIP-F2 and MW-F2 did so in 7 and 23 instances,
respectively. For those instances on which all three approaches found an optimal solution, running
times were orders of magnitude faster with the MW methods compared to solving GSIP-F2.

We expect the monolithic formulation solved by a general-purpose solver to simply provide a
baseline for comparison and not necessarily be a competitive solver for this problem. However, this
baseline serves to highlight the substantial benefits of using the MW method. We can also observe
that MW-CLQ is significantly faster than MW-F2 on DIMACS-10 instances and solves all of
them to optimality, while the two large instances are not solved to optimality using MW-F2. This
is because the decomposition and preprocessing techniques used in MW-CLQ are very effective
on the sparse instances in the DIMACS-10 test bed compared to the DIMACS-2 test bed that
contains very dense instances. On the DIMACS-2 test bed the performance of both MW methods
are generally comparable, with MW-CLQ being faster on most instances solved to optimality by
a small margin.

Regarding the objective values on those instances for which the optimal clique and clique sig-
nature are found, we note that the optimal signatures found are comparably sized to the largest
clique in the snapshot graph G1. Specifically, the optimal persistent cliques are on average 67.1%
the size of the optimal static cliques. It is evident from these results that persistent signatures are
non-trivial on our test bed, and possibly more generally in practice.

8.2 Results for 2-club signatures

In this section, we compare the performance of Algorithm 2 (MW-2CLB) against solving MW-
F2 directly in the MW method and directly solving the monolithic GSIP-F2 formulation with
common neighbor constraints (10). Recall that MW-2CLB uses a decomposition branch-and-cut
algorithm on each window, with a 2-clique based master relaxation and a violated common neighbor
constraint added as a “lazy” constraint during the progress of the branch-and-cut algorithm. The
time limits are the same as those we set for the persistent clique instances.

In Table 6, we present a comparison of the best objectives and the running times for the three
approaches. MW-2CLB and MW-F2 solved all 22 instances to optimality, while only 16 were
solved to optimality with the GSIP-F2 formulation. Similar to the previous section, the use of
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Table 5: Comparison of best objectives and running times for the maximum 3-persistent clique
signature problem on DIMACS-10 and DIMACS-2 instances in our test bed.

Best objective Time (s)
G0 ω(G1) GSIP-F2 MW-CLQ MW-F2 GSIP-F2 MW-CLQ MW-F2

karate 4 4 4 4 3.20 0.02 0.16
lesmis 7 5 5 5 27.32 0.04 0.91
polbooks 5 5 5 5 123.32 0.01 2.17
adjnoun 5 5 5 5 157.78 0.01 1.67
football 8 6 6 6 164.45 0.01 1.58
celegans 8 ≥ 4a 5 5 7287.98 0.14 106.67
email 6 ≥ 5a 5 5 8087.69 0.48 444.85
polblogs 11 ≥ 6a 7 7 7240.37 2.23 973.99
netscience 9 ≥ 3a 6 6 7237.17 0.90 685.26
power 4 ≥ 2a 4 4 7517.39 1.04 5831.37
hep-th 11 ≥ 2ab 6 ≥ 6 26115.28 16.15 23721.57
PGPgiantcompo 12 ≥ 2a 8 ≥ 1 8888.77 22.71 8003.58

C125.9 16 9 9 9 387.40 5.28 5.72
C250.9 21 ≥ 10 11 11 7200.77 170.37 173.38
p hat300-1 7 6 6 6 5853.01 3.22 53.33
p hat300-2 13 ≥ 8 9 9 7201.49 67.63 74.81
p hat300-3 17 ≥ 10 10 10 7202.14 292.30 296.62
MANN a27 ≥ 28 ≥ 12 13 13 7201.34 1767.82 1734.93
brock400 2 16 ≥ 9 10 10 7203.05 917.16 975.25
brock400 4 16 ≥ 9 10 10 7202.85 911.58 963.44
gen400 p0.9 55 ≥ 23 ≥ 11 12 12 7201.28 1387.84 1504.08
gen400 p0.9 65 ≥ 23 ≥ 11 12 12 7201.16 1455.14 1538.17
gen400 p0.9 75 ≥ 22 ≥ 11 12 12 7201.12 1434.47 1440.79
C500.9 ≥ 49 ≥ 11 12 12 7204.63 5415.02 5462.18
dsjc500 5 11 ≥ 7 8 8 7204.63 1490.54 1538.03
dsjc1000 5 ≥ 12 ≥ 8abc ≥ 9 ≥ 9 19649.00 27616.15 7205.68

a Memory related crashes with 96 GB RAM and re-run with 768 GB RAM.
b GSIP-F2 was allowed to run longer than two hours based on the running time of MW methods.
c GSIP-F2 was allowed longer than the two hours time limit on this instance because MW-CLQ took
27,616.15 seconds. However, memory related crash occurred even with 1.5 TB RAM at 19,649 seconds.
* On instances not solved to optimality we report the lower-bound provided by the best solution found.

MW-2CLB, which enables us to decompose the model and employ 2-club-specific preprocessing
techniques, improves solution times significantly (by orders of magnitude on DIMACS-10 instances,
even compared to MW-F2). In addition, the sizes of the largest 2-club signatures on all instances
are comparable with the sizes of the maximum 2-club on the static graph G1, being on average
71.7% the size of their static counterpart. This again suggests that the persistent signatures are
non-trivial and detect relevant graph structures that single-snapshot models cannot identify.

8.3 Results for k-core signatures

We report best objective values and running times for computing 3-persistent k-core signatures
using the GSIP-F2 formulation, Algorithm 3 (MW-CORE), and MW-F2 in Table 7. For each
instance, we choose k to be the largest integer for which the maximal 3-persistent k-core is not
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Table 6: Comparison of best objectives and running times for the maximum 3-persistent 2-club
signature problem on DIMACS-10 and Bourjolly-generator instances in our test bed.

Best objective Time (s)
G0 ω̄2(G

1) GSIP-F2 MW-2CLB MW-F2 GSIP-F2 MW-2CLB MW-F2

karate 15 14 14 14 0.44 0.02 0.43
lesmis 33 20 20 20 3.19 0.03 1.82
polbooks 21 19 19 19 8.60 0.09 3.03
adjnoun 42 27 27 27 9.84 0.05 3.43
football 14 14 14 14 14.09 0.13 4.50
celegans 188 125 125 125 2663.01 0.59 63.78
email 58 ≥ 31a 44 44 7218.74 1.43 577.52
polblogs 284 ≥ 178b 182 182 14435.50 278.84 13582.74
netscience 32 ≥ 26a 26 26 7247.88 0.43 606.55
power 16 ≥ 4a 16 16 7533.08 3.01 7494.43
hep-th 44 ≥ 2ab 38 38 15754.59 9.30 13982.75
PGPgiantcompo 162 ≥ 3abc 106 106 23219.98 11.11 19826.44

bg 1 32 23 23 23 656.83 42.87 95.14
bg 2 29 22 22 22 586.71 39.53 84.51
bg 3 28 24 24 24 676.66 40.56 83.53
bg 4 27 21 21 21 570.64 40.80 81.80
bg 5 29 26 26 26 648.96 50.07 88.50
bg 6 27 23 23 23 614.94 26.26 84.01
bg 7 31 22 22 22 732.08 49.76 89.49
bg 8 28 22 22 22 698.91 65.59 91.98
bg 9 29 22 22 22 683.03 47.57 94.66
bg 10 32 25 25 25 620.14 31.75 84.15

a Memory related crashes with 96 GB RAM and re-run with 768 GB RAM.
b GSIP-F2 was allowed to run longer than two hours based on the running time of MW methods.
c Memory related crashes with 768GB RAM and re-run with 1.5 TB RAM.
* On instances not solved to optimality we report the lower-bound provided by the best solution found.

empty. Our choice of k is the graph signature analogue of the degeneracy of a (single) graph, which
is defined as the largest k for which the given graph contains a non-empty k-core (Szekeres & Wilf,
1968). Although there are alternate approaches available for selecting parameter k, we chose the
aforementioned approach to avoid having to make an arbitrary/fixed choice for parameter k across
all instances in our test bed.

MW-CORE requires under one second for all but one instance in our test bed, including
those instances with more than 100,000 vertices. Being a polynomial-time solvable problem (in
fact, linear in the size of the input) the running time is of a different magnitude from what we
observe for the clique and 2-club signature problems. MW-F2 is competitive except on very large
instances, especially the five largest SNAP instances. As before, the comparison between the best
objective values of GSIP and the size of the maximal k-core of G1 (for the same k) suggests that
the persistent k-core signatures are likely to be non-trivial in practice.

8.4 Results for long sequences

The final experiment of our computational study is to consider signature problems with large
values of T . Here, we generate a graph sequence from the instance identified as G0 using the same
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Table 7: Comparison of best objectives and running times for the maximum 3-persistent k-core
signature problem on DIMACS-10 and SNAP instances in our test bed.

Best objective Time (s)
G0 k core(G1) GSIP-F2 MW-CORE MW-F2 GSIP-F2 MW-CORE MW-F2

karate 3 11 5 5 5 0.04 0.00 0.06
lesmis 6 13 21 21 21 0.08 0.00 0.11
polbooks 5 45 15 15 15 0.11 0.00 0.10
adjnoun 4 57 50 50 50 0.11 0.00 0.18
football 5 113 114 114 114 0.08 0.00 0.29
celegans 7 53 30 30 30 0.43 0.00 0.30
email 7 278 169 169 169 1.45 0.00 0.81
polblogs 27 102 72 72 72 3.39 0.01 1.04
netscience 12 20 19 19 19 0.91 0.00 0.44
power 3 85 40 40 40 10.27 0.01 0.86
hep-th 15 0 24 24 24 31.55 0.01 1.57
PGPgiantcompo 23 42 42 42 42 78.99 0.02 2.20

CollegeMsg 3 301 45 45 45 1.40 0.00 0.47
email-Eu-core-temporal 10 258 106 106 106 1.75 0.01 0.71
sx-askubuntu 9 1380 ≥ 0 16 16 7213.01 0.24 37.88
sx-mathoverflow 13 558 69 69 69 6814.83 0.05 9.11
sx-stackoverflow 26 35119 ≥ 0 90 90 7367.62 4.47 596.37
sx-superuser 9 2788 ≥ 0 40 40 7215.02 0.25 40.93
wiki-talk-temporal 14 3072 ≥ 0 228 228 7230.53 0.56 82.88

* On instances not solved to optimality we report the lower-bound provided by the best solution found.
* The value of parameter k is the largest integer for which a non-empty maximal 3-persistent k-core exists.
* The size of the maximal k-core of G1 is reported under core(G1).
* Running time of 0.00 implies that the actual duration was less than 0.005s.

procedure as before, but with T = 100 and τ = 10. We test the performance of the specialized MW
methods, i.e., MW-CLQ, MW-2CLB, and MW-CORE on DIMACS-10 instances under these
settings. Our results for finding 10-persistent clique, 2-club, and k-core signatures (with k chosen
as before) are reported in Table 8. These results show that the specialized MW methods remain
effective for solving the signature problems even when T and τ take large values.

Table 8: Best objectives and running times for computing 10-persistent graph signatures using
algorithms MW-CLQ, MW-2CLB, and MW-CORE on DIMACS-10 instances with T = 100.

Best objective Time (s)
G0 MW-CLQ MW-2CLB MW-CORE (k) MW-CLQ MW-2CLB MW-CORE

karate 3 8 18 (2) 0.02 0.62 0.00
lesmis 4 14 12 (6) 0.03 1.40 0.01
polbooks 3 15 38 (4) 0.04 2.38 0.02
adjnoun 3 14 34 (4) 0.08 4.78 0.02
football 3 13 115 (5) 0.07 2.96 0.02
celegans 4 41 22 (7) 0.12 19.92 0.07
email 3 21 199 (6) 5.34 55.07 0.10
polblogs 4 161 87 (26) 6.18 1131.36 0.25
netscience 4 21 20 (12) 0.76 26.39 0.09
power 3 8 13 (3) 2.17 174.87 0.19
hep-th 4 24 24 (14) 8.20 494.94 0.27
PGPgiantcompo 4 65 40 (22) 121.09 1157.27 0.33
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9 Concluding Remarks

In many graph-based data mining applications over temporal networks, we are interested in find-
ing subgraphs that persist across a sequence of graphs rather than those found in the individual
snapshots in time, or in a graph that aggregates information across time. We introduce the new
graph-theoretic paradigm of graph signatures motivated by this observation. Identifying graph sig-
natures could be more valuable in settings where patterns that occur in isolation are not of interest,
or if the persistency of a pattern in time indicates its underlying importance in the dynamics of
the network.

The proposed concept is not only limited to cluster or community detection challenges in tempo-
ral networks, but can serve as a framework for extending any graph-theoretic property or invariant
known for a single graph to a sequence of graphs in a straightforward fashion. The framework also
facilitates combining multiple properties in a systematic manner when analyzing graph sequences.

In this introductory article, we present mixed-integer programming formulations for the general
graph signature identification problem where the properties of interest are mixed-integer repre-
sentable. We develop a dynamic programming-based algorithm that alleviates the computational
challenge by decomposing it into sequential subproblems. Referred to as the moving window (MW)
method, the approach further facilitates custom scale-reduction techniques based on decomposition
and preprocessing that are specific to the graph property and the mathematical formulation.

Although the monolithic reformulations are effective on small instances, only the MW method
adequately scales for larger instances. We find in our computational study that the graph signatures
and their static counterparts are comparable in their optimal objective values, suggesting that the
optimal graph signatures are non-trivial and can be found with reasonable computational effort in
practice. Furthermore, the MW method can be parallelized for very long sequences by partitioning
into subsequences, solving each subsequence in a separate thread, and centrally keeping track of
the best signature identified by any thread to facilitate preprocessing across all threads. In other
words, our framework has the potential to detect important graph signatures in complex dynamic
networks for a modest increase in computational effort.

The concept of graph signatures may be extended to stochastic/robust optimization settings, as
well as to online optimization settings in which the graph sequence is streaming continuously. Graph
properties often used in community detection like clique relaxations (Pattillo et al., 2013) and small-
world subgraphs (Kim et al., 2020) could be investigated within the graph signature framework.
These would also offer good candidates for extending the MW method (designed for single property
signatures in this introductory article) to a disjunction between two related but incomparable
properties. Such an approach would entail solving two τ -persistent signature problems in each
window in the MW method. For example, the concept behind the small-world subgraph model
introduced by Kim et al. (2020) combining local average distance and local clustering coefficient
could be revisited in the disjunctive property setting of graph signatures. These are interesting
directions to explore in the future.
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