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The analysis of social and biological networks often involves
modeling clusters of interest as cliques or their graph-theore-
tic generalizations. The k -club model, which relaxes the re-
quirement of pairwise adjacency in a clique to length-bound-
ed paths inside the cluster, has been used to model co-
hesive subgroups in social networks and functional mod-
ules or complexes in biological networks. However, if the
graphs are time-varying, or if they change under different
conditions, we may be interested in clusters that preserve
their property over time or under changes in conditions. To
model such clusters that are conserved in a collection of
graphs, we consider a cross-graph k -clubmodel, a subset of
nodes that forms a k -club in every graph in the collection.
In this paper, we consider the canonical optimization prob-
lem of finding a cross-graph k -club of maximum cardinality
in a graph collection. We develop integer programming ap-
proaches to solve this problem. Specifically, we introduce
strengthened formulations, valid inequalities, and branch-
and-cut algorithms based on delayed constraint generation.
The results of our computational study indicate the signifi-
cant benefits of using the approaches we introduce.
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1 | INTRODUCTION

In graph-based data mining (or graph mining), a node models a data item with different attributes, and two nodes are
joined by an edge if they are “close” to each other based on similarity measures. Graph mining in social and biologi-
cal networks involves modeling clusters of interest using cliques and their graph-theoretic generalizations. In these
graphs, a cohesive/tight-knit subgroup is a subset of nodes whose members are believed or verified to intimately
cooperate with each other towards some specific goal. Cohesive subgroups in social networks could be identified for
use in recommender systems, marketing campaigns, community detection, influencemaximization, and so forth [3]. In
biological networks like protein interaction networks, gene co-expression networks, and metabolic networks, clusters
and network motifs are commonly used to identify functional modules that could represent protein complexes, tran-
scriptional modules, or signaling pathways [19]. The clique and its graph-theoretic relaxations have been extensively
studied and used as models of cohesive subgroups or clusters in diverse fields including social and biological network
analysis [36]. Major categories include the distance based relaxations k -clique and k -club [8], and the edge count,
degree, and edge density based relaxations k -defective clique [45], k -plex [7], and quasi-clique [28], respectively.

A significant body of literature on optimization methods for cluster detection seeks to find a subset of nodes
satisfying a graph propertywhile optimizing ameasure of fitness like cluster size orweight. One common characteristic
shared by optimization approaches to graph mining is that they identify cohesive subgraphs, critical nodes, most
central actors, or other graph structures of interest in a single graph. However, in many settings the graphs are time-
varying as the underlying dynamic systems they are modeling evolve over time. In this case, the single graph under
consideration is typically a snapshot that reflects node relationships at the point in time it is recorded, or it aggregates
information over a period of time in some manner.

Alternatively, relationships between pairs of nodes (and hence the graph model) may be different under different
conditions. Jointly mining the graphs corresponding to different conditions might uncover novel clusters that can-
not be found by individually analyzing the network corresponding to each condition. An example in cross-market
customer segmentation is finding customers who have similar behaviors across different markets as a more robust co-
hesive subgroup than those found in a single market [38]. Similarly, systems biologists are interested in finding groups
of co-expressing genes or interacting proteins that are conserved under different biological conditions or between
different species [37]. These approaches are based on the belief that conserved modules are more likely to govern
core biological functions [29, 43].

Broadly, we call the process of simultaneously mining a collection of two or more graphs for conserved structures
and patterns as cross-graph mining. Despite its potential applications previous work on this topic is limited in the
literature. Algorithms for enumerating cross-graph quasi-cliques to extract hidden patterns crossing multiple pieces
of data were developed in [37, 38]. This work was extended in [18] for finding frequent cross-graph quasi-cliques,
wherein the detected clusters are required to form a quasi-clique in at least a fixed number of graphs in the collection.
An approach to clustering stocks that exhibit homogeneous financial ratio values by mining the complete set of cross-
graph quasi-bicliques in a bipartite graph was introduced in [44] . This bipartite graph has stocks as nodes in one
partition and different features of the stock data in the other partition. The cross-graph quasi-biclique model was
used to handle the issue of missing values in stock data. Models and methods for mining conserved clusters in a
collection of graphs without strictly imposing the cross-graph requirement can also be found in [9, 16, 17, 41, 48].

In this paper we consider a cross-graph k -club model to represent low-diameter clusters that are conserved in
a collection of graphs. Note that the graph collection may represent temporal graphs with an implicit ordering, or
may be obtained under different (experimental) conditions without any natural ordering. Although our focus is on
clusters that induce low-diameter subgraphs, one may investigate any clique relaxation or another graph property in
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the same setting. Our main contributions in this paper1 are integer programming (IP) approaches to find a cross-graph
k -club of the largest cardinality in a given collection of graphs. Specifically, we introduce strengthened formulations,
valid inequalities, and branch-and-cut algorithms based on delayed cut generation that are evaluated on a test bed of
instances in our computational study (see also [33]).

The remainder of this paper is organized as follows. We formally define the problem of interest and briefly review
IP formulations for themaximum k -club problem in Section 2. In Section 3, we introduce a straightforward conjunctive
formulation for themaximum cross-graph k -club problem and propose techniques to strengthen the constraints. Then
in Section 4, we discuss valid inequalities for the problem, including extensions of those known in the literature
for the single-graph problem. In Section 6, we introduce branch-and-cut algorithms together with preprocessing
techniques to solve the problem. We compare the computational results from using the algorithms based on different
IP formulations, and verify the computational effectiveness of approaches we developed for the cross-graph k -club
problem in solving another related problem in temporal graph mining called the k -club signature problem [6]. We
conclude this paper with a summary of our contributions and identify future extensions in Section 7.

2 | BACKGROUND

For a simple graph G , we use V (G ) and E (G ) to denote its node and edge sets respectively. For simplicity we use
uv to denote an edge {u,v } ∈ E (G ) . For a subset of nodes S ⊆ V (G ) , we use G \ S to denote the graph obtained
from G by deleting the nodes in S along with its incident edges and we let G [S ] denote the subgraph induced by S
(obtained by deleting nodes outside S with the edges incident to these nodes). We use G and NG (u) to denote the
complement of graph G and the neighborhood of node u in G , respectively. We use NG (u,v ) = NG (u) ∩ NG (v ) to
denote the common neighborhood of u and v in graphG . We denote by distG (u,v ) the minimum number of edges on
a path connecting nodes u and v in graph G , and its diameter is given by diam(G ) := max{distG (u,v ) : u,v ∈ V (G ) }.

Definition 1 ([25]) Given a graph G and a positive integer k , a subset of nodes S ⊆ V (G ) is called a k -clique if
distG (u,v ) ≤ k for every pair of nodes u,v ∈ S .

Definition 2 ([2, 30]; see also [8]) Given a graph G and a positive integer k , a subset of nodes S ⊆ V (G ) is called a
k -club if diam(G [S ]) ≤ k .

2 4

3 5

1 6

2 4

3 5

1 6

F IGURE 1 The set {1, 2, 3, 4, 5} on the left forms a 2-club; the set {2, 3, 4, 5, 6} on the right forms a 2-clique, but
does not induce a 2-club [2].

A k -clique S allows two nodes u and v to be included even if every path between u and v of length at most k
in G includes nodes outside S (see Figure 1). By contrast, in the k -club model at least one of those paths should
be contained in G [S ]. Together, k -cliques and k -clubs are well-known distance-based clique relaxations [42]. The

1A preliminary version of this work appeared as [33].
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structural guarantees they provide typically determine their suitability for any particular graph mining application.
The k -cliques, for instance, are hereditary; that is, the property is preserved under vertex deletion. In contrast, the
k -club property is not preserved under node deletion. Nonetheless, the lack of heredity may be acceptable when it
is more important to ensure that nodes on at least one of the length-bounded paths is completely contained within
the subgraph induced by the club [2]. Since their introduction in social network analysis [49], these distance-based
clique relaxations have been used in social and biological network analysis [8, 21, 35], as well as other areas. For low
values of parameter k , typically no more than four, the k -club can be an appropriate choice for modeling tightly-knit
clusters.

We define the cross-graph counterpart of the k -club, based on the cross-graph quasi-clique model introduced by
Pei et al [38], which also appears to be the earliest formal study of a cross-graph model. Let G = {G1,G2, . . . ,Gp }
denote a collection of p simple, undirected graphs, all defined on a common node set denoted byV (G) .

Definition 3 A subset of nodes S ⊆ V (G) is called a cross-graph k -club if S is a k -club in each graph in collection G.

This paper focuses on the maximum cross-graph k -club problem, which seeks to find a cross-graph k -club of max-
imum cardinality in G. We use the alternate term “p-graph” k -club if we wish to specify that there are p graphs in
the collection. Otherwise, in line with past usage, we simply refer to it as a cross-graph k -club [38]. The (1-graph)
maximum k -club problem is NP-hard for every fixed k [11], and remains so on graphs of diameter k + 1 [8]. Con-
sequently, the maximum cross-graph k -club problem is NP-hard for every fixed positive integer k as it includes the
maximum k -club problem as special case when G is a singleton. In our previous study on this topic we show that this
problem is NP-hard even if G contains exactly two distinct graphs [32]. Moreover, verifying if a given cross-graph
k -club can be strictly enlarged (the complementary problem to verifying maximality by inclusion) is also shown to be
NP-complete for a collection containing two distinct graphs [32]. This result extends the analogous result known for
(1-graph) 2-clubs to the cross-graph setting [26].

The first IP formulation in the literature for the maximum k -club problem was introduced in [11]. This so-called
chain formulation introduces a binary variable for each path of length at most k connecting a nonadjacent pair of
nodes. For the special case of k = 2, this reduces to the so-called common neighbor formulation for the maximum
2-club problem. As path enumeration gets increasingly challenging as k takes values larger than 2, it can take up to
O (nk+1) binary variables and constraints to fully describe the chain formulation. To the best of our knowledge, no
systematic computational studies have been reported on the chain formulation when k ≥ 3.

Two polynomial-sized IP formulations, one using binary variables and the other using integer variables were intro-
duced in [46]. Fully described by O (k n2) variables and constraints, these are the first compact formulations for the
maximum k -club problem for general k . A decomposition and branch-and-cut algorithm to find a maximum k -club
that employs canonical hypercube cuts as delayed constraints is introduced in [31] (see also [23]). A cut-like formula-
tion and a path-like formulation that use respectively, length-bounded separators and length-bounded connectors are
introduced in [39]. The cut-like formulation could use exponentially many constraints, but only n binary variables. The
computational superiority of this formulation is demonstrated by the numerical results reported in [39], which makes
this the state-of-the-art mathematical programming approach to solve the maximum k -club problem for general k .

3 | INTEGER PROGRAMMING FORMULATIONS

An IP formulation for the maximum cross-graph k -club problem can be obtained by simply taking the conjunction of
any IP formulation for the maximum k -club problem over all graphs in the collection. We refer to this straightforward
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approach as the conjunctive formulation. In this section, we first extend the cut-like formulation of themaximum k -club
problem [39] to the cross-graph setting through conjunction. We present ideas which strengthen this formulation,
and eventually arrive at a new formulation based on a preprocessing procedure that we call pairwise peeling. We
also identify new valid inequalities for the problem and cross-graph extensions of existing valid inequalities from the
literature.

Definition 4 Given a graph G and a pair of nonadjacent nodes u and v , a subset of nodes S ⊆ V (G ) \ {u,v } is called
a length-k u,v -separator if distG\S (u,v ) > k .

Definition 4 implies that every path of length at most k in G between nodes u and v , uses nodes from S . Let
SG (u,v ) denote the collection of all length-k u,v -separators that are minimal by exclusion. For the case k = 2, the
unique minimal length-2 u,v -separator is the common neighborhood NG (u,v ) .

Formulation (1) that follows is the conjunctive cut-like formulation (CCF) of the maximum cross-graph k -club
problem over a collection G. For a subset of nodes S ⊆ V (G) , we use the shorthand x (S ) := ∑

u∈S xu . It is readily
verified that x is an incidence vector of a cross-graph k -club if and only if it is feasible to the CCF.

max x (V (G)) (1a)

s.t. xu + xv − x (S ) ≤ 1 [S ∈ SG (u,v ),uv ∈ E (G ),G ∈ G (1b)

xu ∈ {0, 1} [u ∈ V (G) . (1c)

Formulation (1) can be strengthened by noting that if a node w that belongs to some minimal length-k u,v -
separator of graph G ∈ G (i.e., w ∈ S ∈ SG (u,v )) is also at a distance strictly greater than k from either u or v
in some other graph H ∈ G in the collection, then w cannot be included in a cross-graph k -club that contains both u
and v . Consequently, constraints (1b) can be replaced by

xu + xv − x (S ∩ Duv ) ≤ 1, (2)

where Duv is the set of nodes that are at distance at most k from u and v in all the graphs in G, defined as:

Duv := {w ∈ V (G) \ {u,v } : distG (u,w ) ≤ k and distG (v ,w ) ≤ k [G ∈ G} .

The validity of constraints (2) follows from the validity of (1b) and from the observation that if xu = xv = 1, then
x (S \ Duv ) = 0, because no nodes from the set S \ Duv can be included in a cross-graph k -club containing u and v .
Alternately, we can think of S ∩Duv as further reducing the size the separator S by removing nodes that are not in any
path of length at most k between u and v , in some graph in the collection. Observe that the resulting formulation is at
least as tight as the CCF. Moreover, there are instances where S ∩Duv ⊂ S for at least one separator S ∈ SG (u,v ) , as
illustrated in the following example, which means that there are instances where the resulting formulation is strictly
tighter than (1).

Consider the maximum 2-graph 2-club problem on the graph collection in Figure 2. Formulation (1) includes the
constraint x1 + x2 − x3 ≤ 1 due to node pair 1 and 2 in G and constraint x1 + x2 − x6 ≤ 1 due to the same pair of nodes
in H . Note that distH (1, 3) = 3. We can therefore tighten the first constraint by intersecting the minimal separator
{3} with D1,2 = {5, 6, 7} to obtain the constraint x1 + x2 ≤ 1 that dominates both previous constraints.

Based on the foregoing observations, we can now envision an approach in which we further tighten the con-
straints with respect to each u,v pair, by recursively deleting nodes which are too far away from either u or v in any
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G

1 2

34
5

67

H

1 2

34
5

67

F IGURE 2 Inequality x1 + x2 ≤ 1 is valid for the problem on G = {G ,H } when k = 2.

graph in the collection. This is a recursive operation because the deletion of nodes can have a domino effect on
pairwise distances in graphs, leading to more nodes meeting the condition for deletion. The resulting inequalities will
be at least as strong as their counterpart in constraints (2). However, it is important to recognize that this operation
is node pair specific, i.e., the graph collection obtained by deleting nodes based on a particular u,v pair is only valid
for generating constraints with respect to that pair. This is because nodes deleted based on u and v might be within
distance k of a different node pair.

G

2 4

3 5
1 6

H

2 4

3 5
1 6

F IGURE 3 Inequality x1 + x6 ≤ 1 is valid for the problem on {G ,H } when k = 3.

To illustrate this idea, consider the maximum 2-graph 3-club problem on the graph collection in Figure 3. Con-
straints (2) are listed below for the node pair 1 and 6, for graphs G and H , by noting that D1,6 = {3, 4, 5}, SG (1, 6) ={
{2, 3}, {2, 5}, {3, 4}, {4, 5}

}
, and SH (1, 6) =

{
{3}, {4}

}
.

x1 + x6 − x3 ≤ 1

x1 + x6 − x5 ≤ 1

x1 + x6 − x3 − x4 ≤ 1

x1 + x6 − x4 − x5 ≤ 1

x1 + x6 − x3 ≤ 1

x1 + x6 − x4 ≤ 1

However, the inequality x1 + x6 ≤ 1 that can replace all of the foregoing constraints for the node pair 1 and 6 can
be derived as follows: observe that distH (2, 6) = 4 > 3, thus if we want to simultaneously include nodes 1 and 6 in a
2-graph 3-club, then we cannot include node 2 and it can be deleted from G and H . Then, the distG\{2} (1, 4) = 4 > 3,
and consequently we cannot include node 4 either. Upon deleting nodes 2 and 4 from G and H , we find that nodes
1 and 6 are disconnected in H ; so, x1 + x6 ≤ 1 is valid.
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Algorithm 1: Pairwise Peeling
Input: G, k , uv ∈ J
Output: Guv

1 do
2 W ← ∅
3 for G ∈ G do
4 for w ∈ V (G) \ (W ∪ {u,v }) do
5 if distG (u,w ) > k or distG (v ,w ) > k then
6 W ←W ∪ {w }
7 delete w from every graph in G

8 whileW , ∅;
9 return Guv ← G

Algorithm 1 formalizes the idea illustrated by the foregoing example to generate tighter constraints, and we refer
to it as the pairwise peeling algorithm. Let us denote the node pairs that are nonadjacent in some graph in the collection
G by J :=

{
{u,v } ⊂ V (G) : uv ∈ E (G ) for some G ∈ G

}
. The algorithm takes a graph collection G, a positive integer

k , and a node pair uv ∈ J as input, and creates an auxiliary graph collection Guv by recursively deleting from every
graph in the collection, nodes that are more than distance k from either u or v in some graph in the collection. The
constraints for the node pair u and v can then be generated based on the minimal separators of graphs in this auxiliary
collection Guv . Thus, we can replace constraints (1b) by the following based on the pairwise peeled collection:

xu + xv − x (S ) ≤ 1 [S ∈ SG (u,v ) and G ∈ Guv such that uv ∈ E (G ),uv ∈ J . (3)

Proposition 1 Replacing constraints (1b) in formulation (1) by constraints (3) produces a correct formulation for the maxi-
mum cross-graph k -club problem.

The claim follows from the observation that the incidence vector of a cross-graph k -club satisfies constraints (3)
and every binary vector satisfying these constraints also satisfies constraints (1b). Furthermore, constraints (2) and (3)
coincide when k = 2, because the unique minimal length-2 u,v -separator inG is the common neighborhood NG (u,v ) .
Its intersection with Duv remains undisturbed after pairwise peeling is applied for this node pair, i.e., NG (u,v ) ∩Duv ∈
SG (u,v ) for the graph G ∈ Guv .

Pertinently, given a graph G , a positive integer k , and a (possibly fractional) point x ∗ ∈ [0, 1] |V (G ) | , finding a
length-k u,v -separator S for some node pair u,v such that x ∗u + x ∗v − x ∗ (S ) > 1 is known to be NP-hard for k ≥ 5 and
is solvable in polynomial-time for k ∈ {2, 3, 4} (see [5, 39]). The case k = 2 is straightforward, as the common neigh-
borhood NG (u,v ) is the unique minimal separator. The cases k ∈ {3, 4} require solving the maximum flow problem
on an auxiliary network and applying the maximum flow–minimum cut theorem to identify a “violated separator”, or
conclude that none exists.

Proposition 2 The pairwise peeling algorithmwill delete the same set of nodes independent of the order in which the graphs
in G are processed by the algorithm.

Proof Suppose for a specific uv ∈ J, (w1,w2, . . . ,wq ) is the order in which nodes were deleted using an ordering π
of the graphs in G. Then, w1 is too far from either u or v in some graph in the original collection, and hence, must be
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deleted by Algorithm 1 using any other ordering of graphs in G. Ifw2 was deleted followingw1 when using π , then in
any other ordering, after w1 is deleted, we know that w2 must be too far from either u or v , and therefore, must also
be deleted. By repeating this argument, {w1,w2, . . . ,wq } must be deleted under any ordering that is different from π .
As π is arbitrary, we can conclude that the final outcome of Algorithm 1 is independent of the order in which graphs
in G are processed.

Henceforth, we refer to this new formulation as the pairwise peeled cut-like formulation (PPCF). For each uv ∈ J,
constraint (3) is at least as strong as constraint (2) (which in turn dominates constraint (1b)). In our computational
experiments reported in Section 6, we assess the gains made by using Algorithm 1 to generate potentially stronger
constraints.

4 | VALID INEQUALITIES

In this section, we introduce a family of valid inequalities for arbitrary k obtained by lifting selected zero coefficient
variables in inequality (3) and another for the special case k = 2 that extends a result from the literature for the 2-club
polytope [27].

4.1 | Lifted cut-like constraints

We can strengthen constraint (3) by lifting the coefficients of some of the variables under certain conditions, similar
to the approach taken in [39]. Consider a pair of nodes u,v for which we have produced a peeled collection Guv . For
graphs G ,H ∈ G (not necessarily distinct), consider a node w with distG (u,w ) > k and distH (v ,w ) > k . We know
thatw cannot belong to any minimal length-k u,v -separator inG or H , before the collection is peeled for the pair u,v .
After peeling,w will no longer exist in any of the graphs, and therefore cannot belong to S ∈ SG (u,v ) for anyG ∈ Guv .
We are interested in finding an αw such that inequality xu + xv + αw xw − x (S ) ≤ 1 remains valid. Let XCLUBk (G)
denote the cross-graph k -club polytope of G, i.e., the convex hull of feasible solutions to formulation (1). We need,

αw ≤ 1 −max{xu + xv − x (S ) : x ∈ XCLUBk (G), xw = 1} = 1,

because xu = xv = 0 for every feasible x with xw = 1 by our choice ofw . We can repeat this argument by lifting another
node at distance greater than k from each of the nodes u,v , andw in some graph in the collection, also with coefficient
one. We can now generalize this observation to based on the following definition to yield valid inequality (4). Define a
subset of nodes I ⊆ V (G) as a cross-graph distance-k independent set if every pair of distinct nodes in I are at distance
greater than k in some graph in G.

Proposition 3 Given a collection G, a positive integer k , let Guv denote the collection peeled for the node pair u,v . Consider
a length-k u,v -separator S ∈ SG (uv ) for some G ∈ Guv . Suppose I ⊆ V (G) \ {u,v } is a maximal subset (by inclusion of
nodes) such that I ∪ {u } and I ∪ {v } are cross-graph distance-k independent sets in G. The following inequality is valid for
XCLUBk (G) :

xu + xv + x (I ) − x (S ) ≤ 1. (4)

If distG (u,v ) > k for some graph G ∈ Guv , the empty set is the unique minimal length-k u,v -separator in G and
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inequality (4) includes the special case xu + xv + x (I ) ≤ 1, where I ∪ {u,v } forms a maximal cross-graph distance-k
independent set.

4.2 | Independent set inequality for cross-graph 2-clubs

Mahdavi Pajouh et al. [27] introduced the following independent set valid inequality for the (single graph) 2-club poly-
tope of graph G :

x (C ) −
∑

u∈V (G )\C
( |NG (u) ∩ C | − 1)+xu ≤ 1, (5)

where C is an independent set in graph G and the notation (t )+ denotes the max(t , 0) given some real number t .
Inequality (5) is valid for XCLUB2 (G) if C is an independent set in some graphG ∈ G because it is satisfied by every 2-
club inG based on the result in [27], and every cross-graph 2-club of G is a 2-club inG . The following theorem shows
that we can further strengthen this valid inequality for our setting. We use N 2

G (u) to denote the subset of nodes at
distance atmost two from vertex u in every graph in the collection, i.e., N 2

G (u) := {v ∈ V (G) : distG (u,v ) ≤ 2 [G ∈ G}.

Theorem 4 Given a graph collection G and a set C ⊂ V (G) that is independent in some graph G ∈ G, inequality (6)
is valid for XCLUB2 (G) :

x (C ) −
∑

u∈V (G)\C
( |NG (u) ∩ C ∩ N 2

G (u) | − 1)
+xu ≤ 1. (6)

Proof Let S be an arbitrary cross-graph 2-club of G and x S be its incidence vector. It suffices to show that the
following inequality holds in order to show that x S satisfies inequality (6):

|C ∩ S | −
∑

u∈S\C
( |NG (u) ∩ C ∩ N 2

G (u) | − 1)
+ ≤ 1.

As u ∈ S and S is a cross-graph 2-club, we know that S ⊆ N 2
G (u) . Therefore,

|C ∩ S | −
∑

u∈S\C
( |NG (u) ∩ C ∩ N 2

G (u) | − 1)
+ ≤ |C ∩ S | −

∑
u∈S\C

( |NG (u) ∩ C ∩ S | − 1)+ .

Next, we use induction on the cardinality of C ∩ S to prove that:

|C ∩ S | −
∑

u∈S\C
( |NG (u) ∩ C ∩ S | − 1)+ ≤ 1.

If |C ∩ S | = 1, the inequality is trivially true. For some integer q ≥ 2, we prove the claim for |C ∩ S | = q , by
assuming the claim to hold for all C and S such that |C ∩ S | ≤ q − 1.

Arbitrarily pick a node a ∈ C ∩ S and let Ca B C ∩ S \ {a }. Note that Ca ⊂ S is a nonempty independent set in
G . By induction hypothesis,

|Ca ∩ S | −
∑

u∈S\Ca
( |NG (u) ∩ Ca ∩ S | − 1)+ ≤ 1.
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We can now rewrite the inequality above as:

|C ∩ S | − 1 − ( |NG (a) ∩ Ca ∩ S | − 1)+ −
∑

u∈S\C
( |NG (u) ∩ Ca ∩ S | − 1)+ ≤ 1, or

|C ∩ S | − 1 −
∑

u∈S\C
( |NG (u) ∩ Ca ∩ S | − 1)+ ≤ 1, (7)

because node a belongs to the independent set C implying that NG (a) ∩ Ca = ∅.
Now, consider a node b ∈ Ca . As nodes a and b are contained in the independent set C and the cross-graph

2-club S , distG (a, b) = 2 and a common neighborw of nodes a and b must exist in S and that nodew cannot be inside
the independent set C . Hence, we know that w ∈ S \ C and that |NG (w ) ∩ C ∩ S | = |NG (w ) ∩ Ca ∩ S | + 1 ≥ 2.

From inequality (7) we obtain,

1 ≥ |C ∩ S | − 1 −
∑

u∈S\C
( |NG (u) ∩ Ca ∩ S | − 1)+

= |C ∩ S | − 1 − ( |NG (w ) ∩ Ca ∩ S | − 1) −
∑

u∈S\(C∪{w })
( |NG (u) ∩ Ca ∩ S | − 1)+

= |C ∩ S | − ( |NG (w ) ∩ C ∩ S | − 1) −
∑

u∈S\(C∪{w })
( |NG (u) ∩ Ca ∩ S | − 1)+

≥ |C ∩ S | −
∑

u∈S\C
( |NG (u) ∩ C ∩ S | − 1)+, establishing our claim.

Theorem 4 includes as a special case, the independent set valid inequality (5) for the single-graph 2-club polytope
established in [27] by observing that if G is a singleton, then NG (u) ⊆ N 2

G (u) . The induction approach used offers an
alternate proof of that result. Another consequence is that the separation of these more general inequalities is also
NP-hard, as inequality (5) is known to be NP-hard to separate [27].

It is also worth noting that our valid inequality (6) dominates inequality (5), which is also valid for XCLUB2 (G) .
Consider the two-graph collection G = {G ,H } in Figure 2. For the set C = {1, 5, 6}, which is independent in G ,
inequality (5) yields x1 + x5 + x6 − x3 − x4 − x7 ≤ 1, whereas inequality (6) yields x1 + x5 + x6 − x4 − x7 ≤ 1.

Both valid inequalities (4) and (6) we have considered in this section relate to inequalities established in the
literature for single-graph k -clubs [27, 39]. These inequalities, under suitable conditions, are also known to induce
facets of the 2-club polytope. However, we have not identified non-trivial sufficient conditions that do the same
in the cross-graph setting. The primary challenge is with identifying the required number of affinely independent
incidence vectors of cross-graph k -clubs that lie on the face of the convex hull induced by our valid inequalities, in
order to demonstrate the dimension of that face. In contrast to the single-graph counterpart, the shortest paths that
connect the same pair of nodes in a cross-graph k -club can be different in each graph in the collection, making the task
of identifying affinely independent feasible solutions very challenging. Identifying facets of XCLUBk (G) , especially
when k = 2, is an interesting problem for future study.

5 | DELAYED CONSTRAINT GENERATION

The main goal of our computational study in Section 6 is to compare the performance of a general purpose IP solver
when using CCF and PPCF to solve the maximum cross-graph k -club problem. As both formulations use exponentially
many constraints in the worst case, we implement them in a delayed fashion in the two decomposition branch-and-
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Algorithm 2: Preprocessing
Input: A graph collection G, a positive integer k ≥ 2

Output: A preprocessed graph collection G
1 obtain the intersection graph J (G)
2 compute a k -club S of J (G) using the DROP heuristic
3 do
4 obtain the power intersection graph J (Gk )
5 CorePeel(G, J (Gk ), |S |)
6 CommunityPeel(G, J (Gk ), |S |)
7 CrossEdgePeel(G, J (Gk ))
8 while G is modified;
9 return G

cut (BC) algorithms that use the same initial root node relaxation based on cross-graph k -cliques. These delayed
constraint generation approaches and preprocessing ideas are described in this section.

5.1 | Preprocessing

Before applying the decomposition BC algorithms, we apply extensions of some preprocessing techniques that are
known to be effective for the single-graph counterpart to our cross-graph setting [23, 31, 39]. Algorithm 2 describes
this preprocessing scheme based on a feasible solution S obtained using the “DROP heuristic” [10] for k -clubs, applied
to the intersection graph J (G) with node setV (G) and edge set ⋂

G∈G
E (G ) . Every k -club in J (G) is a cross-graph k -club

in G, although the converse is not true.
Peeling based on this cross-graph k -club S is designed to remove nodes and edges from graphs in the collection

without affecting any feasible solution of size more than |S |. To this end, we first construct the power intersection
graph of G, denoted by J (Gk ) . The node set of J (Gk ) is V (G) and a pair of nodes are made adjacent in J (Gk ) if
the distance between them is at most k in every graph in the collection. Finally, we use the observation that every
cross-graph k -club (and every cross-graph k -clique defined next) forms a clique of the same size in J (Gk ) , allowing
us to apply peeling ideas from the maximum clique literature.

Definition 5 Given a graph collection G, a subset of nodes S ⊆ V (G) is called a cross-graph k -clique if S is a k -clique
in each graph in G.

Once a feasible solution S is available, we implement core peeling [1] followed by community peeling [47] proce-
dures on J (Gk ) ; the peeling actions are mirrored on G. If node u has fewer than |S | neighbors in J (Gk ) , it cannot
belong to a cross-graph k -club larger than S (because if it did, node u would have degree at least |S | in J (Gk )). Core
peeling recursively deletes nodes with degree less than |S | in J (Gk ) , and also from every graph in G. After core-
peeling, J (Gk ) will be an |S |-core as long as it is not null. Next, a pair of nodes u and v that are adjacent in J (Gk )
can belong to a cross-graph k -club larger than S only if they have at least |S | − 1 common neighbors in J (Gk ) . If
not, during community peeling step, the edge uv can be deleted from J (Gk ) and from every graph in the collection
in which u and v are adjacent.
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The power intersection graph J (Gk ) may contain more connected components after core and community peeling
than before. As a result, there may exist an edge uv ∈ E (G ) for some G ∈ G whose end points u and v belong to
different connected components of J (Gk ) . The edge uv can be removed from everyG ∈ G containing the edge. Doing
somay disconnect a graphG ∈ G so that not only u and v belong to different components, but so do some other nodes
a and b that are adjacent in J (Gk ) ; then, we can delete edge ab from J (Gk ) . In other words, during the “cross edge”
peeling step, we recursively delete an edge uv from every graph in the expanded collection G ∪ {J (Gk ) } in which it is
present, if u and v are in different connected components of some graph in G or J (Gk ) . When this recursive procedure
finishes, every graph in the expanded collection G ∪ {J (Gk ) } will have connected components with identical node
subsets inducing the components (see also [22] for a similar approach used in a different context). As this may result
in changes to the graphs in G, we iterate over these peeling steps until G no longer changes. Although we chose not
to do so, one might also look for a new feasible solution in J (G) before repeating the peeling steps. Next we describe
our decomposition BC algorithms as applied to the collection of graphs G output by Algorithm 2.

5.2 | Initial root node relaxation

Denote by E, the edge set of the complement graph of the power intersection graph of J (Gk ) , i.e., E :=
{
{u,v } ⊆

V (G) : distG (u,v ) > k in some graph G ∈ G
}
. Like the single-graph counterparts, a cross-graph k -clique is a graph-

theoretic relaxation of a cross-graph k -club. The maximum cross-graph k -clique problem is equivalent to the classical
maximum clique problem on J (Gk ) formulated as:

max {x (V (G)) : xu + xv ≤ 1 [uv ∈ E, xu ∈ {0, 1} [u ∈ V (G) } ,

where x is the incidence vector of cross-graph k -cliques in G. This formulation based on conflict constraints serves as
the initial root relaxation that we start solving in both variants of our decomposition BC algorithms. To avoid having
conflict constraints in the initial root relaxation for pairs of nodes that reside in different components of J (Gk ) , we
extend the initial relaxation by using a binary variable for each connected component of J (Gk ) and enforce that
nodes selected must belong to the same component. Let C denote the set of components of J (Gk ) . The initial root
relaxation problem we use is given in formulation (8).

max x (V (G)) (8a)

s.t. xu + xv ≤ 1 [uv ∈ E (H ) and H ∈ C (8b)

y (C) ≤ 1 (8c)

xu ≤ yH [u ∈ V (H ) and H ∈ C (8d)

xu ∈ {0, 1} [u ∈ V (G) (8e)

yH ∈ {0, 1} [H ∈ C (8f)

Recall that every G ∈ G and the graph J (Gk ) have a set of connected components that are induced by the
identical node subsets of V (G) . Therefore, we could alternatively solve the maximum cross-graph k -club problem
on the collection of connected components corresponding to one such identical node subset at a time. We chose
to use the extended formulation (8) in order to eliminate from experimental consideration, variations that consider
greedy or reverse greedy orderings based on component sizes, and those that iteratively fix a node to be included in
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the solution permitting us to solve the problem in the k -neighborhood of the fixed node. Although our purpose here
is to demonstrate the effectiveness of using one formulation over another in a decomposition BC algorithm, we do
recognize that incorporating more ideas from the literature on k -clubs and its variants [15, 20, 24, 31, 39, 40] could
potentially improve the effectiveness of our methods.

The two decomposition BC algorithms, henceforth referred to by the underlying formulations CCF and PPCF,
would detect a violated constraint (1b) and (3), respectively, whenever an integral solution is encountered in the BC
tree that corresponds to a cross-graph k -clique that is not a cross-graph k -club. We chose not to separate fractional
solutions based on our preliminary experiments that did not indicate noticeable performance gains for our test bed.
For the special case k = 2, we also separate the independent set valid inequality (6). We discuss our separation
procedures next.

5.3 | Separation procedures

Given a graphG , a positive integer k , and a (possibly fractional) point x ∗ ∈ [0, 1] |V (G ) | , finding a length-k u,v -separator
S in G , for some node pair u,v such that x ∗u + x ∗v − x ∗ (S ) > 1 is known to be NP-hard for k ≥ 5 and is solvable in
polynomial-time for k ∈ {2, 3, 4} (see [5, 39]). The case k = 2 is trivial as a unique minimal separator exists in the form
of the common neighborhood NG (u,v ) . The cases k ∈ {3, 4} require a transformation to an auxiliary network on
which we need to solve the maximum flow problem. However, we solved the separation problems using a heuristic
procedure following the approach taken in [39]. Moreover, we separate constraint (1b) in CCF and constraint (3) in
PPCF using Algorithm 3 and Algorithm 4, respectively, only if the BC node linear programming (LP) relaxation optimum
x ∗ is binary. The BC root node initial relaxation (8) ensures that such an x ∗ corresponds to a cross-graph k -clique. All
violated constraints that are detected if x ∗ is not a cross-graph k -club are added to the lazy-cut pool. The BC node
relaxation is re-solved by applying at least some of these cuts, as determined by the solver.

Algorithm 3: CCF Separation Heuristic
Input: G, k , x ∗ ∈ {0, 1} |V (G) |

1 K ← {u ∈ V (G) | x ∗u = 1} B K is a cross-graph k-clique

2 for each u,v ∈ K and G ∈ G do
3 if distG [K ] (u,v ) > k then
4 Apply MINIMALIZE from [39] to the trivial distance-k u,v separatorV (G ) \ K to obtain a minimal

separator S in G
5 add constraint xu + xv − x (S ) ≤ 1 violated by x ∗ to lazy-cut pool

6 return x ∗ corresponds to a cross-graph k -club

The separation problem for valid inequality (5) for the maximum (single graph) 2-club problem was shown to be
NP-hard, and its exact and heuristic separation was computationally investigated in [27]. The separation problem for
valid inequality (6) for the special case k = 2 can be formulated as a mixed-integer nonlinear program (MINLP) similar
to the single-graph counterpart introduced in [27]. The following MINLP formulation (10) is the starting point for our
approach to using them as cutting planes. However, our subsequent linearization uses fewer variables to handle the
nonlinear objective compared to the approach used in [27]. Furthermore, based on the computational experience
reported in [27], in our experiments, we favor the use of general-purpose mixed-integer linear programming (MILP)
rounding heuristics available in the solver rather than attempting exact solution, or using simple greedy combinatorial
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Algorithm 4: PPCF Separation Heuristic
Input: G, k , x ∗ ∈ {0, 1} |V (G) |

1 K ← {u ∈ V (G) | x ∗u = 1} B K is a cross-graph k-clique

2 for each u,v ∈ K and G ∈ G do
3 if distG [K ] (u,v ) > k then
4 Apply Pairwise Peeling Algorithm 1 on 〈a copy of G, k ,uv 〉 to obtain Guv
5 Let G ′ ∈ Guv correspond to G ∈ G
6 Apply MINIMALIZE from [39] to the trivial distance-k u,v separatorV (G ′) \ K to obtain a minimal

separator S in G ′

7 add constraint xu + xv − x (S ) ≤ 1 violated by x ∗ to lazy-cut pool

8 return x ∗ corresponds to a cross-graph k -club

heuristics for this separation problem.

Iterating over each graph G ∈ G, we seek an independent set in G that underlies inequality (6), in order to
separate the point x ∗ ∈ [0, 1] |V (G) | . Let the binary variable zi indicate if node i is selected in the independent set in
graph G ∈ G.

ζ (x ∗,G ) := max
∑

i ∈V (G)
x ∗i zi −

∑
i ∈V (G)

x ∗i (1 − zi )
©«

∑
j ∈NG (i )∩N 2

G (i )

z j − 1
ª®®¬
+

(9)

A violated independent set inequality exists for graph G if and only if ζ (x ∗,G ) > 1. We can introduce variables
wi to linearize the objective function and obtain the following separation MILP.

ζ (x ∗,G ) := max
∑

i ∈V (G)
x ∗i zi −

∑
i ∈V (G)

x ∗i wi (10a)

s.t. wi ≤ |NG (i ) ∩ N 2
G (i ) | (1 − zi ) [i ∈ V (G) (10b)

wi ≥
∑

j ∈NG (i )∩N 2
G (i )

z j − 1 − |NG (i ) ∩ N 2
G (i ) |zi [i ∈ V (G) (10c)

wi ≥ 0 [i ∈ V (G) (10d)

zi + z j ≤ 1 [{i , j } ∈ E (G ) (10e)

zi ∈ {0, 1} [i ∈ V (G) (10f)

Rather than attempting to solve the separation MILP (10) to optimality, we utilize it in a heuristic. Our approach,
summarized in Algorithm 5, is to solve formulation (10) on each graph G ∈ G whenever the LP relaxation optimum x ∗

at a BC node is binary, with the aim of finding a good feasible solution or fail to find one after |G | attempts. Hence,
we terminate the Gurobi solver early once a feasible solution of objective at least 1 + ε is detected or the time limit t̄
is reached.
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Algorithm 5: Independent Set Inequality Separation Heuristic
Input: G, k , x ∗ ∈ {0, 1} |V (G) | , minimum cut violation ε, time limit t̄

1 for G ∈ G do
2 Find a “good” feasible solution by solving formulation (10) for input 〈x ∗,G 〉 with time limit t̄ and

minimum objective target of 1 + ε to obtain (z ∗,w ∗) B Feasibility of (10) is guaranteed

3 if objective value at (z ∗,w ∗) is at least 1 + ε then
4 return Cutting plane (6) for independent set C := {i ∈ V (G ) : z ∗

i
= 1}

6 | COMPUTATIONAL STUDY

We report results from our computational experiments conducted on 64-bit Linuxr compute nodes with dual Intelr

“Skylake" 6130CPUswith 96GBRAM. The algorithms are implemented in C++ and the optimizationmodels are solved
usingGurobiTMOptimizer v9.0.1 [14]with a solve time limit of 7200 seconds. The global cut aggressiveness parameter
in Gurobi is configured to shut off all general purpose cutting planes in order to ensure that our comparisons are a
better representation of the effectiveness of the user-defined cutting planes added. All unspecified Gurobi settings,
including rounding heuristics and number of threads are left at their default settings.

In general, we consider the following parameter values in our experiments: k ∈ {2, 3, 4} and the number of
graphs in the collection p ∈ {2, 3, 4, 5}. Our test bed is generated from the following three groups of graphs: the
Tenth DIMACS Implementation Challenge benchmarks [4] (DIMACS-10 graphs), graphs used in computational studies
in [46] (VB graphs), and graphs used in computational studies in [23, 27, 31] (BG graphs). These graphs are commonly
used benchmarks for the maximum k -club problem. It is also known that the edge densities of these graphs have
a discernible impact on whether or not the instances are challenging for particular values of parameter k [26]. We
incorporate this observation by appropriately matching the BG graphs to the value of parameter k for which we
solve the maximum cross-graph k -club problem. For DIMACS-10 and VB graphs, we first conduct a set of preliminary
experiments to recognize challenging graph and k combinations. Graph collections for our computational experiments
are generated from these graphs, and the generation procedure varies by group. In Sections 6.1 and 6.2, we discuss
our experimental results by groups of graphs in our test bed, explain the generation procedures, and the selection of
challenging instances in greater detail. In Section 6.3, we consider the impact of the independent set inequality on
PPCF for the special case of k = 2. In Section 6.4, we conduct a computational case study on the effectiveness of
PPCF on a related problem of findingmaximum k -club signature, which can be reduced to solving a series of maximum
cross-graph k -club problems. Codes and instances used in our computational experiments are publicly available on
GitHub [34].

For most of our experiments, we report results averaged over 11 − p runs, i.e., on graph collections {G1, . . . ,Gp },
{G2, . . . ,Gp+1 }, . . . , {G11−p , . . . ,G10 }. The only exception being the results reported from solving themaximum k -club
signature problem in Section 6.4, where we report the largest solution from solving a series of maximum cross-graph
k -club problems, following the definition of a signature. We use consistent column headings in all tables reported
in this section, with any differences in the club signature results identified in corresponding table notes. We report
under column headings “k ” and “p” the corresponding parameter values and the graph collection is indicated under the
column labeled “Collection”. Under the columns labeled “#Nodes” and “#Edges” we report the number of nodes and
edges, respectively, that were removed from the graph collection in the preprocessing step using the pairwise peeling
Algorithm 2. Columns labeled “obj” and “time (s)”, respectively report the average optimal objective value and average
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running time in seconds of the corresponding approach, unless indicated otherwise in the table notes. Columns
labeled “#LC” under CCF and PPCF report the average number of lazy constraints added, namely CCF constraint (1b)
and PPCF constraint (3), respectively. The average number of branch-and-cut nodes enumerated is reported under
the column heading “#BCN”. The columns labeled “#NCT” report the average number of terms with coefficient -1 on
the left hand side of the added lazy constraint xu + xv − x (S ) ≤ 1, i.e., |S |. This is an indirect indicator of the strength
of the constraints. Generally, the smaller this number, the stronger the constraint. The extra column labeled “#SLC”
(only under PPCF) reports the average number of strengthened PPCF constraints of type (3) added. In order to count
the constraints of type (3) that are not of type (1b), we check if the distance-k u,v -separator S in G ′ obtained in
step 6 of Algorithm 4 is not a distance-k u,v -separator in any G ∈ G. That is, we only count under #SLC if for every
G ∈ G, distG\S (u,v ) ≤ k . This implies that such a PPCF contraint could not have been obtained as a CCF constraint
from any graph.

6.1 | BG graphs

The BG graphs we use are part of the test bed used in [31], which was generated based on the procedure outlined
in [11] (see also [13]). There are four classes of 200-node BG graphs, with 10 samples each from a random generation
procedure, designated by their (average) edge density: BG_15 and BG_10 have densities 15% and 10% respectively
and are challenging when k = 2; BG_5 have densities of 5% and are challenging for k = 3; BG_2.5 with densities
around 2.5% are challenging for k = 4. We report results for the challenging instances in Table 1.

PPCF based branch-and-cut takes, on average, 47.2% less time than CCF for instances solved to optimality. Note
that the wall-clock time for PPCF also includes the time spent in computing the statistics reported under column
#SLC. PPCF and CCF did not reach optimality for five and six BG_15 instances, respectively, for the case p = 2 and
k = 2, and the statistics for these cases are very similar between the two approaches. For PPCF, over 72% of the lazy
constraints added are of the stronger type (3), which could explain the noticeably better running time performance of
this approach. For most of the instances, we observe a smaller value under #NCT for PPCF than CCF. Note that the
value of #NCT is zero for six groups of instances under PPCF. The lazy constraints of this type are actually conflict
constraints with no negative terms on the left hand side. Across all instances solved to optimality, CCF enumerated
over 21% more BC nodes on average than PPCF. The foregoing observations strongly suggest that PPCF approach
based on pairwise peeling constraints significantly improves our ability to find maximum cross-graph k -clubs on this
group of instances.

6.2 | DIMACS-10 and VB graphs

We used 12 graphs from the DIMACS-10 benchmarks, listed in Table 2, each serving as a “seed graph” to generate a
corresponding total of 10 graphs. The edge set of each graph in the collection is constructed at random; we start with
an empty graph and add edges from the seed graphwith a probability of 0.8. These are the same graph collections used
in the computational studies reported in [6]. VB graphs are from the test bed used in [46], and all three subclasses
in this group contain 10 graphs randomly generated with the same target (average) edge density using the same
generation procedure as BG graphs [11, 13]. Each of these graphs has 300 nodes and the three classes are designated
as VB_0.5, VB_1.0, and VB_1.5, respectively for their edge densities 0.5%, 1.0%, and 1.5%.

The results from our preliminary experiments to identify challenging collections based on DIMACS-10 and VB
graphs for the cross-graph problem are reported in Tables 10–21 in [32]. We solve the collection {G1, . . . ,Gp } (recall
that we have 10 graphs corresponding to each subclass inside each group) for each value of parameters k and p of
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TABLE 1 Comparison of CCF and PPCF on BG instances.

Reduction by Peelg CCF PPCF

k p Collection #Nodes #Edges obj time (s) #LCa #NCTb #BCNc obj time (s) #LCa #SLCd #NCTb #BCNc

2 2 BG_10 0 0 9.4 102.8 12,043 2.3 29,276 9.4 79.6 11,241 9,421 0.7 16,411

2 2 BG_15 0 0 16.7e 175.2%e 17,334 4.0 6,301,030 16.4f 172.0%f 17,377 1,291 3.9 6,321,129

2 3 BG_10 0 0 4.6 56.1 24,381 2.3 14,768 4.6 38.7 25,076 25,056 0.0 15,293

2 3 BG_15 0 0 7.9 948.5 25,544 4.1 337,562 7.9 977.2 25,224 4,241 3.9 343,897

2 4 BG_10 0 0 2.0 96.9 38,205 2.3 15,475 2.0 32.3 38,316 38,316 0.0 16,418

2 4 BG_15 0 0 4.4 453.1 43,709 4.3 75,002 4.4 388.0 43,698 12,654 3.9 58,895

2 5 BG_10 0 0 1.2 92.9 44,370 2.3 14,099 1.2 32.4 44,424 44,424 0.0 14,362

2 5 BG_15 0 0 2.3 352.2 64,949 4.3 48,562 2.3 296.2 64,846 29,274 3.4 36,145

3 2 BG_5 0 0 12.0 725.7 23,617 4.0 244,328 12.0 547.8 23,343 6,130 3.6 194,812

3 3 BG_5 0 0 2.4 256.0 51,806 3.9 44,706 2.4 135.5 51,537 34,877 2.0 31,791

3 4 BG_5 0 0 1.0 290.9 71,580 3.9 43,299 1.0 54.5 71,639 65,718 0.6 31,516

3 5 BG_5 0 0 1.0 310.1 88,124 4.0 41,397 1.0 33.0 88,152 87,022 0.1 24,751

4 2 BG_2.5 5 31 8.8 113.7 19,605 3.2 19,287 8.8 60.5 17,094 14,920 0.9 16,069

4 3 BG_2.5 0 85 1.1 142.9 37,352 2.8 19,743 1.1 48.2 37,175 37,150 0.0 18,930

4 4 BG_2.5 0 160 1.0 95.8 41,928 2.8 20,527 1.0 35.6 41,928 41,928 0.0 17,332

4 5 BG_2.5 0 258 1.0 88.6 43,211 2.7 12,490 1.0 20.2 43,247 43,247 0.0 12,127

a Average number of lazy constraints added.
b Average number of negative terms in a lazy constraint.
c Average number of branch-and-cut tree nodes.
d Average number of lazy constraints added that were strictly strengthened by pairwise peeling.
e Average MILP gap over 6 out of 9 instances that were not solved to optimality and were terminated when the time limit was reached. Here we report the average

of the best solutions found for all 9 instances under the obj columns. The average running time is 6,102.8 seconds over 3 out of 9 instances that were solved to
optimality.

f Average MILP gap over 5 out of 9 instances that were not solved to optimality and were terminated when the time limit was reached. Here we report the average
of the best solutions found for all 9 instances under the obj columns. The average running time is 6,069.4 seconds over 4 out of 9 instances that were solved to
optimality.

g Peeling was not very effective on BG instances.

interest using both algorithms. We observe that when solving most of these instances there are very few (sometimes
zero) lazy constraints added by both CCF and PPCF. If the initial relaxation is practically sufficient to solve the problem
using both approaches, we consider these instances not to be sufficiently challenging for the problem, and therefore
no meaningful distinction can be made between the performance of the two algorithms. Based on our preliminary
experiments, we only include those instances that required over 100 lazy constraints using either CCF or PPCF. We
rerun the two BC algorithms and report results averaged over 11 − p runs (as described before) in Table 3. As a larger
number of lazy constraints are needed to solve these instances, the benefits of using PPCF over CCF is also observed
in the results in Table 3. Across this test bed, on average, PPCF is 12.8% faster and over 33% of the lazy constraints
added by PPCF are the stronger type (3) constraints.

6.3 | PPCF with independent set inequality for cross-graph 2-clubs

In this section, we report on our experiment adding the independent set inequality (6) to our PPCF method for the
special case of cross-graph 2-clubs and assess its performance on the BG instances, which are among the more chal-
lenging instances in our test bed. In our experiments, we set the minimum constraint violation parameter ε = 0.5

with a time limit of t̄ = 30 seconds for each G . As we only separate binary points, constraint violation will always be
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TABLE 2 DIMACS-10 seed graphs used in generating graph collections.

G |V (G ) | |E (G ) | Edge Density (%)

karate 34 78 13.90

lesmis 77 254 8.68

polbooks 105 441 8.08

adjnoun 112 425 6.84

football 115 613 9.35

celegans 453 2,025 1.98

email 1,133 5,451 0.85

polblogs 1,490 16,715 1.51

netscience 1,589 2,742 0.22

power 4,941 6,594 0.05

hep-th 8,361 15,751 0.05

PGPgiantcompo 10,680 24,316 0.04

a positive integer (within numerical tolerance). We also apply the PPCF separation Algorithm 4 to generate violated
PPCF constraints following the attempt at finding a violated independent set inequality using Algorithm 5 to ensure
the overall correctness of our algorithm. MILP formulation (10) is also incrementally updated before it is solved as
the integral point x ∗ being separated only influences the objective function of this MILP. The results are reported in
Table 4.

Althoughwe expected these cuts to improve overall performance for k = 2 for the challenging BG instances in our
test bed, we observed a deterioration in performance in terms of average running time/optimality gap and tree size.
We observed similar performance losses for other values of ε and termination time limit. It also appears based on the
numbers reported under the column labeled #ISLC that a relatively small number of violated independent set cutswere
found. The average ratio of #ISLC/#LC is just 3.3%. Adding only the PPCF constraints and letting the tree enumerate
appears to be the better choice in our experimental set up. However, it is possible that an entirely different approach
to adding these cutting planes could lead to better performance. For instance, we could attempt aggressive fractional
separation at the root, adding a round of cutting planes simultaneously by generating one for each graph, and/or
adding these cutting planes only at the top levels of the tree. These are directions worth exploring for the special
case of k = 2. Even for the single-graph counterpart, there is currently no known branch-and-cut implementation
that successfully exploits independent set cuts for the maximum 2-club problem, to our best knowledge.

6.4 | Club signatures case study

In this section, we conduct a computational case study to assess the effectiveness of the approaches developed in
this paper, in solving a closely related problem—the maximum k -club signature problem. The approach we developed
to solve this problem in [6] requires solving a series of maximum cross-graph k -club problems, thus motivating the

Portions of Section 6.4 are reprinted with permission from: .
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TABLE 3 Comparison of CCF and PPCF on DIMACS and VB instances.

Reduction by Peele CCF PPCF

k p Collection #Nodes #Edges obj time (s) #LCa #NCTb #BCNc obj time (s) #LCa #SLCd #NCTb #BCNc

3 2 email 259 825 127.2 664.3 4,830 3.1 48,617 127.2 660.1 5,213 308 3.0 49,894

3 2 football 0 0 30.7 0.5 1,428 2.2 438 30.7 0.6 1,468 83 2.1 452

3 3 email 247 1,132 113.0 791.8 7,896 3.4 70,188 113.0 841.2 7,674 820 3.3 86,506

3 3 football 0 0 26.1 0.6 1,512 2.4 395 26.1 0.6 1,612 204 2.1 417

3 4 email 248 1,485 104.1 950.5 8,870 3.6 51,937 104.1 750.2 9,552 1,411 3.3 32,434

3 4 football 0 0 25.1 0.5 1,616 2.5 199 25.1 0.5 1,350 255 2.2 183

3 5 email 249 1,824 97.3 1,003.9 13,026 3.8 49,815 97.3 915.9 12,322 2,219 3.4 34,256

3 5 football 0 0 24.7 0.5 1,695 2.6 220 24.7 0.5 1,612 396 2.1 164

4 2 VB_1.0 0 169 2.1 9.9 3,399 1.2 1,525 2.1 7.8 3,320 3,320 0.0 1,555

4 2 VB_1.5 6 35 4.3 336.8 27,301 1.9 22,386 4.3 155.1 27,421 27,417 0.0 21,598

4 2 email 183 462 462.9 15.6 1,310 3.7 550 462.9 16.8 1,303 29 3.6 546

4 3 VB_1.5 0 110 1.6 228.3 35,568 1.8 17,136 1.6 72.2 36,009 36,009 0.0 19,497

4 3 email 167 570 432.5 23.4 2,211 6.3 912 432.5 25.0 2,189 82 6.4 798

4 3 hep-th 7,384 29,569 175.9 209.8 2,315 3.4 1,007 175.9 216.3 3,310 240 3.2 954

4 4 VB_1.5 0 240 1.0 187.7 29,629 1.7 8,335 1.0 47.9 29,630 29,630 0.0 9,643

4 4 email 150 595 411.1 27.0 2,615 6.0 1,284 411.1 29.1 2,596 195 5.9 1,156

4 4 hep-th 7,248 38,182 154.6 339.2 4,073 3.2 2,251 154.6 336.5 3,665 490 3.1 1,600

4 5 VB_1.5 0 466 1.0 91.1 20,184 1.7 3,928 1.0 35.8 20,187 20,187 0.0 4,609

4 5 email 152 729 396.2 26.6 2,642 5.2 1,454 396.2 29.0 2,349 213 4.9 1,392

4 5 hep-th 7,016 44,855 139.5 607.8 5,489 3.8 2,298 139.5 555.9 4,049 717 3.7 1,921

a Average number of lazy constraints added.
b Average number of negative terms in a lazy constraint.
c Average number of branch-and-cut tree nodes.
d Average number of lazy constraints added that were strictly strengthened by pairwise peeling.
e Peeling was effective on most of these instances, with the exception of the VB graphs and the football graph.

present study. We introduce the necessary background before presenting our computational results on this problem,
and use the notation [T ] to denote the index set {1, 2, . . . ,T } in the following discussion. We also emphasize here
that graph signatures are defined on sequences of graphs (e.g., temporal graphs) as opposed to an unordered collection.

Definition 6 Given a graph sequence G = (Gt , t ∈ [T ]) and positive integers k and τ , we call a subset of nodes S a
τ-persistent k -club signature in G if there exists a subsequence H = (G t , . . . ,G t+τ−1) of G such that S forms a k -club in
every graph in the subsequence.

The maximum k -club signature problem seeks to find a maximum cardinality τ-persistent k -club signature of
G. By definition, a τ-persistent k -club signature of G is also a τ-graph k -club on a consecutive subsequence of τ
graphs; or more precisely on the graph collection obtained by ignoring the ordering. A monolithic IP formulation and
a moving window (MW) method are introduced to solve the maximum 2-club signature problem in [6]. Given a graph
sequence G, the MWmethod involves solvingT −τ +1maximum τ-graph k -club problems (window problems) on the
T − τ + 1 consecutive subsequences of length τ (windows). Two versions of the MW method, MW-2CLB and MW-
F2, are compared for solving the maximum 2-club signature problem in [6]. Each of the subproblems in MW-F2 is
solving a conjunction of τ common neighbor formulations, while a subproblem of MW-2CLB exploits decomposition
and preprocessing techniques by adding the common neighbor constraints in a delayed manner similar to CCF. The
computational results in [6] show thatMW-2CLB,which is essentially the same as using CCF for eachwindowproblem,
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TABLE 4 Comparison of PPCF and PPCF + Independent Set Cut on BG instances for k = 2.

PPCF PPCF + Independent Set Cut

k p Collection obj time (s) #BCNa #LCb obj time (s) #BCNa #LCb #ISLCc

2 2 BG_10 9.4 79.6 16,411 11,241 9.4 106.3 17,987 11,350 249

2 2 BG_15 16.4d 172.0%d 6,321,129 17,377 16.4e 209.7%e 4,732,194 17,319 491

2 3 BG_10 4.6 38.7 15,293 25,076 4.6 48.4 16,371 24,102 626

2 3 BG_15 7.9 977.2 343,897 25,224 7.9 1212.0 353,595 25,217 468

2 4 BG_10 2.0 32.3 16,418 38,316 2.0 55.5 15,962 38,153 1,964

2 4 BG_15 4.4 388.0 58,895 43,698 4.4 473.6 61,862 44,109 1,087

2 5 BG_10 1.2 32.4 14,362 44,424 1.2 60.9 15,334 44,444 2,543

2 5 BG_15 2.3 296.2 36,145 64,846 2.3 382.8 37,918 66,588 2,329

a Average number of branch-and-cut tree nodes.
b Average number of PPCF lazy constraints added. This does not include the independent set cuts added.
c Average number of violated independent set cuts added.
d Average MILP gap over 5 out of 9 instances that were not solved to optimality and were terminated when the time limit

was reached. Here we report the average of the best solutions found for all 9 instances. The average running time is
6,069.4 seconds over 4 out of 9 instances that were solved to optimality.

e Average MILP gap over 8 out of 9 instances that were not solved to optimality and were terminated when the time limit
was reached. Here we report the average of the best solutions found for all 9 instances. The one instance solved to
optimality took 5,804.9 seconds.

is preferable over MW-F2 and directly solving the monolithic IP formulation of the problem. In this section, we
compare the performance of the moving window counterparts (MW-CCF and MW-PPCF) of the decomposition BC
algorithms with preprocessing introduced in this paper in solving the maximum k -club signature problem.

Although a maximum k -club signature problem can be solved by decomposing it into a series of maximum τ-
graph k -club problems, it is preferable to not treat them independent of each other. As the preprocessing/peeling
procedures between two consecutive window problems may reduce the size of the subsequent window problems
more effectively if given a better feasible solution found in one of the previous window problems. Therefore, we
use the DROP heuristic [10] on the intersection graph of the very first window to find a feasible solution used in
preprocessing, and subsequently update it with the best feasible solution found as we sequentially solve the window
problems.

In the rest of this section, we report our results from two experiments comparing the performance of MW-
CCF and MW-PPCF in solving the maximum k -club signature problem. Generally, we consider k ∈ {2, 3, 4} and
τ ∈ {2, 3, 4, 5} in our first set of experiments on only the challenging instances identified for each k from our fore-
going experiments. We consider longer graph sequences (i.e., larger T ) with a larger value of τ in the second set of
experiments. We remark that the results reported in this section are not averaged like in the previous tables, as we
are now solving the club signature version with a moving window of length τ over a T -graph sequence seeking a
window containing the largest cardinality τ-graph k -club. For each window problem, we allow a Gurobi solve time
limit of 3600 seconds and terminate the algorithm if two consecutive window problems are not solved to optimality.
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Tables 5 and 6 summarize the results. Both MW-CCF and MW-PPCF did not solve one instance from the BG col-
lections to optimality. Overall, MW-PPCF is over 47% faster on average than MW-CCF on BG instances that were
solved to optimality, and over 23% faster on average on DIMACS-10 and VB instances. The advantage of MW-PPCF
on DIMACS-10 and VB instances are not as obvious because significantly fewer lazy constraints were added on these
instances.

TABLE 5 Comparison of MW-CCF and MW-PPCF on BG instances.

MW-CCF MW-PPCF

k τ Collection objb time (s)c objb time (s)c

2 2 BG_10 10 927.1 10 717.3

2 3 BG_10 5 447.3 5 309.4

2 4 BG_10 3 673.9 3 226.9

2 5 BG_10 2 551.5 2 193.8

2 2 BG_15 ≥ 17a 7202.7 ≥ 17a 7203.1

2 3 BG_15 10 7567.5 10 7893.7

2 4 BG_15 5 3159.2 5 2708.7

2 5 BG_15 3 2121.6 3 1785.5

3 2 BG_5 14 6550.2 14 4961.0

3 3 BG_5 4 2055.4 4 1077.8

3 4 BG_5 1 2037.8 1 379.8

3 5 BG_5 1 1849.8 1 197.7

4 2 BG_2.5 11 1030.3 11 559.4

4 3 BG_2.5 2 1146.5 2 344.3

4 4 BG_2.5 1 664.8 1 247.2

4 5 BG_2.5 1 518.9 1 121.1

a Instance not solved to optimality; the best solution found (a
valid lower bound) is reported.

b This column reports the optimal size of a τ-persistent k -club
signature.

c This column reports the wall-clock running time (in seconds)
of the moving window algorithm.

The aim of our second set of experiments is to explore the impact of larger values of τ on real-life graphs, especially
if non-trivial (in terms of size) solutions are detected. We use the same sequence generator as before to generate 12
sequences based on the 12 DIMACS-10 graphs identified in Table 2 that includes many social and biological networks.
Each instance is a sequence containing 100 graphs. For these instances, we consider τ = 10 and k = 2, 3, 4. Results
are reported in Table 7. Interestingly, we find that MW-CCF is 7% faster than MW-PPCF on average, although there
is one instance hep-th_100 that MW-CCF did not solve to optimality, but MW-PPCF did. Although not significantly
behind, the additional time spent generating PPCF constraints was not worthwhile in this experiment. Nonetheless,
it is interesting to see that the size of the optimal k -club signature identified is not very small despite using a larger τ .



22 Pan et al.

TABLE 6 Comparison of MW-CCF and MW-PPCF on DIMACS-10 and VB instances.

MW-CCF MW-PPCF

k τ Collection obja time (s)b obja time (s)b

3 2 email 135 2,441.8 135 2,893.0

4 2 email 473 133.6 473 128.8

3 3 email 123 4,528.5 123 3,589.7

4 3 email 440 129.6 440 127.1

3 4 email 114 3,428.0 114 1,392.3

4 4 email 419 128.6 419 135.8

3 5 email 107 3,122.2 107 2,979.2

4 5 email 403 112.7 403 133.9

3 2 football 35 7.5 35 4.7

3 3 football 28 5.6 28 5.0

3 4 football 26 5.4 26 3.4

3 5 football 25 6.2 25 3.1

4 3 hep-th 198 1,310.2 198 1,277.4

4 4 hep-th 171 1,465.0 171 1,365.0

4 5 hep-th 143 1,854.8 143 1,710.8

4 2 VB_1.0 3 52.7 3 40.8

4 2 VB_1.5 7 3,144.4 7 1,539.3

4 3 VB_1.5 2 1,523.0 2 752.6

4 4 VB_1.5 1 1,374.4 1 336.1

4 5 VB_1.5 1 584.1 1 214.6

a This column reports the optimal size of a τ-persistent k -club
signature.

b This column reports the wall-clock running time (in seconds)
of the moving window algorithm.
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TABLE 7 Comparison of MW-CCF and MW-PPCF on DIMACS-10 instances withT = 100 and τ = 10.

MW-CCF MW-PPCF

k Instance objb time (s)c objb time (s)c

2 adjnoun_100 14 6.0 14 5.5

3 adjnoun_100 54 8.0 54 8.1

4 adjnoun_100 89 2.5 89 2.5

2 celegans_metabolic_100 41 28.1 41 37.0

3 celegans_metabolic_100 188 174.4 188 184.4

4 celegans_metabolic_100 361 153.9 361 207.1

2 email_100 21 205.6 21 221.8

3 email_100 90 18,342.1 90 17,371.9

4 email_100 373 3,037.7 373 3,750.3

2 football_100 13 1.6 13 1.7

3 football_100 24 29.9 24 34.3

4 football_100 86 555.4 86 582.0

2 hep-th_100 24 608.3 24 632.4

3 hep-th_100 44 35,011.6 44 34,786.5

4 hep-th_100 ≥ 119a 64,143.6 119 65,629.1

2 karate_100 8 0.7 8 0.6

3 karate_100 17 0.6 17 0.6

4 karate_100 24 0.5 24 0.5

2 lesmis_100 14 1.1 14 1.2

3 lesmis_100 32 0.9 32 0.9

4 lesmis_100 51 1.0 51 1.1

2 netscience_100 21 24.0 21 25.0

3 netscience_100 27 34.0 27 35.7

4 netscience_100 40 37.4 40 38.4

2 PGPgiantcompo_100 65 11,701.3 65 11,810.1

3 PGPgiantcompo_100 196 6,283.7 196 6,536.6

4 PGPgiantcompo_100 387 38,307.6 387 43,014.0

2 polblogs_100 161 3,253.2 161 3,857.7

3 polblogs_100 581 2,334.3 581 2,576.6

4 polblogs_100 945 1,983.4 945 2,127.9

2 polbooks_100 15 1.6 15 1.9

3 polbooks_100 36 1.4 36 1.5

4 polbooks_100 52 2.1 52 2.3

2 power_100 8 208.4 8 213.7

3 power_100 16 426.8 16 443.2

4 power_100 28 571.5 28 599.5

a Instance not solved to optimality; the best solution found (a valid lower
bound) is reported.

b This column reports the optimal size of a τ-persistent k -club signature.
c This column reports the wall-clock running time (in seconds) of the moving

window algorithm.
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7 | CONCLUDING REMARKS

The cross-graph k -club model is designed to mine low-diameter clusters conserved in graph collections. Such a col-
lection may represent a time-varying graph or a graph where node relationships change under different conditions.
This paper develops integer programming approaches to find a maximum cardinality cross-graph k -club from a given
graph collection. Our main contribution is the strengthening of a well-known cut-like formulation for the single-graph
counterpart through what we call pairwise peeling and assessing its computational performance in conjunction with
preprocessing and delayed constraint generation. Our results strongly suggest that there is significant advantage to
using the approaches we introduce in this paper.

We also identify valid inequalities for the problem for general k and if k = 2, essentially extending single-graph
counterparts. An important by-product is an alternative proof of validity of the independent set inequality proved
in [27] for the maximum 2-club problem. At this time, we are unable to establish facet-inducing conditions for these
inequalities, and consider it an important next step to advance this study. Similar to what has been observed in the
context of single-graph counterpart of the independent set inequalities, we have been unable to make effective use
of these cuts in a branch-and-cut algorithm that outperforms our delayed constraint generation algorithm using the
original constraints. We expect these inequalities to contribute to our ability to solve challenging instances of the
problem as we better understand their strength and devise effective separation procedures.

Motivated by detection and deactivation of fake accounts in social media, a methodology which interdicts k -clubs
of maximum cardinality in a given graph is studied in [12]. As relationships between accounts in social media are time
varying, one could consider interdicting a cross-graph maximum k -club over a collection of snapshot graphs in order
to identify a more robust interdiction policy. Likewise, one may consider interdiction problems in temporal graphs
like the interdiction of atomic k -clubs [22] or k -club signatures [6]. The maximum cross-graph k -club problem can
serve as the separation problem in these broad future directions for this study. Although our focus in this paper is on
clusters that induce low-diameter subgraphs, one may investigate any clique relaxation or another graph property in
the cross-graph setting depending on the domain or data underlying the graph models.
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