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1. Introduction

Consider a network in which a ‘Markovian evader’ moves from one vertex

to another vertex along an arc. In this setting the vertices of the network form

the state space of this Markov chain and transitions happen from a vertex to

its (out) neighbor with known one-step transition probabilities. This stochas-

tic model underlies many approaches analyzing misinformation and influence

spread in social networks, cluster analysis of hyperlink networks found in the

World Wide Web [1], and controlling infectious diseases where the Markov

chain describes the disease spread [2]. In particular, this study is motivated

by the use of Markov chains in the stochastic variants of attack graphs used

in cybersecurity analysis [3, 4, 5, 6]. Specifically, a probabilistic attack graph

can be modeled as a Markovian evader moving in the graph. Each state of

the graph represents a vulnerability of the system (with one absorbing state

representing the violated security goal); and the transition probabilities are

a function of the exploitability scores of the vulnerabilities [3].

A relevant question from the point of view of a network manager is to allo-

cate resources to maximally disrupt, or interdict, the evader’s operation, and

several variants of the Markovian evader interdiction framework are available

in the literature on network interdiction. For example, Gutfraind et al. [7]

consider multiple Markovian evaders who choose edges to traverse based on

a random walk defined by a Markovian transition matrix. Each evader has

a target in the network, and the goal of the interdictor is to interdict edges

using a limited budget to increase the probability of capturing evaders before

reaching their targets. Johnson et al. introduce two interdiction problems

with Markovian evaders in [8], wherein one problem maximizes the number
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of captured evaders under a limited budget for vertex interdiction and the

other problem focuses on capturing all the evaders at a minimum cost. Sefair

et al. [9] consider a setting where the interdictor protects a subset of vertices

with a limited budget while the evader attacks a set of unprotected vertices

leading to changes in the transition probabilities. The evader’s goal is to

minimize the weighted expected hitting time, while the interdictor seeks to

maximize it.

In this paper, we introduce a new variant of Markovian evader interdiction

where the interdiction of a vertex increases the probability that the Markov

chain remains in said vertex and decreases the probability that the Markov

chain jumps to other vertices. As a consequence, interdiction ‘slows down’ the

evolution of the chain. In particular, we consider the expected first passage

time as the metric of performance of the evader, and the interdictor aims to

maximize the minimum expected first passage time between two given sets of

vertices. For instance, in the context of attack graph interdiction, our model

could serve to identify the vulnerabilities where a network manager should

invest his/her limited resources to reduce exploitability scores, in order to

maximize the time it takes to attackers to reach their objective.

Previous papers have consider an approach to Markov chain interdiction

analogous to the one we propose. For instance, Magazev and Tsyrulnik [10]

and Kasenov et al. [11] consider interdiction to maximize the expected first

passage time between two fixed nodes in the context of attack graph inter-

diction. These works, however, assume specific simple Markov chains and

their results cannot be employed in general Markov chains. On the other

hand, works that consider interdiction in general Markov chains to optimize
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first passage times, such as [9], focus on developing solution algorithms but

provide no general properties about the model nor its computational com-

plexity. In this sense, our work complements existing literature by providing

a general model and theoretical analyses for first passage time interdiction

in Markov Chains.

Specifically, the main contributions of this paper are: (i) we demonstrate

that, under some circumstances, interdiction could improve the evader’s per-

formance contrary to expectation. We then provide sufficient conditions for

designing an interdiction policy that prevents counter-productive interdic-

tion; namely, that the interdiction penalties only depend on the departing

state (Section 3.1); (ii) we show that the optimal interdiction problem is NP-

hard by a reduction from vertex cover (Section 3.2); and (iii) we introduce a

mixed-integer programming (MIP) formulation and use it to demonstrate the

usefulness of this interdiction framework on a test bed of benchmark social

and biological networks (Sections 4 and 5).

The remainder of the paper is organized as follows. Section 2 introduces

the problem formally and Section 3 contains our theoretical results. Section 4

has the MIP formulations which are tested in the numerical experiments in

Section 5. Section 6 presents our concluding remarks.

2. Problem statement

Consider a digraph D = (V,A) with vertex set V and arc set A ⊆ V ×

V [12]. We assume that every vertex i ∈ V has a self-loop (i, i) ∈ A, but D

contains no parallel arcs. The open out-neighborhood of vertex i is defined as

N+(i) := {j ∈ V \{i} : (i, j) ∈ A} and N+[i] := N+(i)∪{i} is the closed out-
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neighborhood. We assume that the stochastic process {Xn : n = 0, 1, 2, . . .}

is a discrete-time Markov chain (DTMC) with state space V . The transition

probability matrix is denoted by P , where Pij = 0 if (i, j) /∈ A.

For j ∈ V let τj be the first time by which the DTMC visits vertex

j, which is defined as τj := min{n ≥ 0: Xn = j}. For i ∈ V , we define

tij := E[τj|X0 = i], thus tij is the expected first passage time (FPT) to j

given that the chain initially is at state i. For convenience, hereafter we

omit the word ‘expected’ when referring to first passage times. Consider two

disjoint, nonempty subsets of vertices denoted by S and T . In the context of

misinformation spread, subset S can be considered as malicious users from

which misinformation originates, whereas those in T can be considered as

users vulnerable to misinformation. In attack graphs, S can be considered as

a set of initial vulnerability states, whereas T is a set of states representing

the completion of the attack. We assume that P [τj < ∞|X0 = i] = 1 for all

i ∈ S and j ∈ T , which, because |V | < ∞, can be ensured if there is at most

one closed communicating class in C ⊆ V such that T ⊆ C [13]. Under this

assumption, for j ∈ T , the FPT to j starting in i ∈ S can be computed by

solving the following system of linear equations (Theorem3.3, [14]):

tij = 1 + Piitij +
∑

k∈N+(i)

Piktkj, ∀i ∈ V \ {j}, (1a)

tjj = 0. (1b)

The goal of the interdiction problem is to disrupt vertices in V to increase

the first passage times from vertices in S to vertices in T . We assume that

interdicting vertex i ∈ V decreases the transition probability Pij to Pij(1 −

∆ij) for every j ∈ N+(i), where ∆ij ∈ [0, 1) is a known interdiction penalty
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parameter associated with every outbound arc at vertex i. (Note that we do

not consider the self-loop an outbound arc, and self-loops are not associated

with any interdiction penalty.) Consequently, interdicting vertex i increases

the probability of traversing the self-loop at i to Pii +
∑

j∈N+(i) Pij∆ij to

ensure that the total one-step transition probability at i equals one. This is

illustrated in Figure 1. Furthermore, as ∆ij < 1, the DTMC has the same

class decomposition pre- and post-interdiction.

The motivation behind the proposed model of interdiction is to ‘slow

down’ the evolution of the chain in the following sense. Whenever the DTMC

visits an interdicted vertex, it will remain at the interdicted vertex for more

time periods (in expectation) because we have Pii ≤ Pii +
∑

j∈N+(i) Pij∆ij

for any admissible value of ∆ij. Furthermore, the expected number of time

periods that the DTMC remains at an interdicted vertex can be made ar-

bitrarily large by making all the ∆ij arbitrarily close to 1. However, as we

elaborate in Section 3.1, interdiction might not necessarily increase the first

passage times and conditions are needed to ensure this happens.

Based on this interdiction model, we introduce the optimization prob-

lem (2) with the objective of interdicting at most b vertices to maximize the

smallest FPT from S to T . Let B :=
{
x ∈ {0, 1}|V | :

∑
i∈V xi ≤ b

}
denote

the set of feasible interdiction policies. Then, we aim to solve:

t∗S,T := max
x∈B

min
i∈S
j∈T

{tij(x) : tij(x) satisfies equations (3)}

 , where, (2)

tij(x) = 1 +

Pii +
∑

k∈N+(i)

Pik∆ikxi

 tij(x)
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Figure 1: By interdicting vertex 1, self-loop transition probability at vertex 1 increases,

while transition probabilities on outbound arcs {1, 2} and {1, 3} decrease.

+
∑

k∈N+(i)

Pik(1−∆ikxi)tkj(x) ∀(i, j) ∈ V × V : i ̸= j, (3a)

tjj(x) = 0 ∀j ∈ V. (3b)

Observe that system of equations (3) is analogous to the system of equations

in (1), with the difference that (3) captures the effect of interdiction according

to policy x ∈ B.

3. Properties of the interdiction problem

In this section, we focus on the following: (i) establishing sufficient con-

ditions under which interdicting a vertex does not decrease the FPTs; and

(ii) proving that the optimization problem (2) is NP-hard.
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3.1. Preventing counter-productive interdiction

In general, interdiction of a vertex might not ensure that the FPTs in-

crease. Consider the digraph in Figure 2. Let S = {1}, T = {3}, and for

every i ∈ V let Pij = 1/3 for each j ∈ N+[i]. We can solve system (1) to find

that t13 = 4.5. Indeed, note that the system of equations in this case is

t13 = 1 +
1

3
t13 +

1

3
t23

t23 = 1 +
1

3
t23 +

1

3
t13 +

1

3
t43

t43 = 1 +
1

3
t43 +

1

3
t23,

and consequently, t13 = 4.5, t23 = 6 and t43 = 4.5.

12

34

Figure 2: An example to illustrate that FPT may decrease upon interdiction in some cases.

Now, suppose that ∆12 = 4/5, ∆13 = 1/10 and that vertex 1 is inter-

dicted, that is, x = (1, 0, 0, 0)′. The probabilities for the arcs leaving vertex

1 including the self-loop change to

P
′

12 =
1

3
· 1
5
=

1

15
, P

′

13 =
1

3
· 9

10
=

3

10
, P

′

11 =
1

3
+

1

3
· 4
5
+

1

3
· 1

10
=

19

30
.
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Replacing these probabilities in the equations results in:

t13(x) = 1 +
19

30
t13(x) +

1

15
t23(x)

t23(x) = 1 +
1

3
t23(x) +

1

3
t13(x) +

1

3
t43(x)

t43(x) = 1 +
1

3
t43(x) +

1

3
t23(x),

which gives that t13(x) = 3.72, t23(x) = 5.48, and t43(x) = 4.24. Therefore,

t13(x) < t13, and the FPT from between S and T in this case has decreased

after interdiction according to x.

Intuitively, in the example in Figure 2, interdiction of vertex 1 makes it

more likely for the DTMC to remain in vertex 1 (increasing the probability

from 1/3 to 19/30) while at the same time decreasing the probability of

transitioning from 1 to 3 only by small amount (from 1/3 to 3/10). This

imbalance is because ∆13 is much smaller compared to ∆12. Thus, one can

expect interdiction to be successful, if for any i ∈ V, all the ∆ij have similar

values across all the outbound arcs. This observation is made precise in

Theorem 1. Subsequently, in Theorem 2, we show that FPT interdiction is

NP-hard even when restricted to such instances.

Theorem 1. If the interdiction penalties ∆ij on the outbound arcs depend

only on the departing state, that is, for every i ∈ V , we have ∆ij = ∆i ∈ [0, 1)

for all j ∈ N+(i), then the FPTs are monotonically non-decreasing functions

of the interdiction policies (partially) ordered by vertex inclusion. That is,

for distinct i ∈ V and j ∈ T , tij(x̄) ≥ tij(x̃) for x̄, x̃ ∈ {0, 1}|V | such that

x̄ ≥ x̃.

Proof. For an arbitrary fixed vertex j ∈ T , after enforcing tjj(x) = 0 and

9



Pii +
∑

k∈N+(i) Pik = 1, we can rewrite equations (3) as follows:

tij(x)−
1

(1− Pii)

∑
k∈N+(i)\{j}

Piktkj(x) =
1

(1−∆ixi)(1− Pii)
∀i ∈ V \ {j}.

For given x and j, we express the foregoing system of |V | − 1 equations in

as many unknown FPTs in matrix notation to facilitate our arguments. Let

the unknown FPTs be denoted by the (|V | − 1)-dimensional column vector:

T (x) := [t1j(x), t2j(x), · · · , tj−1,j(x), tj+1,j(x), · · · , t|V |,j(x)]
⊤,

and let Q denote the (|V | − 1)× (|V | − 1) matrix whose entries are defined

below (with rows and columns indexed by V \ {j} for convenience):

Qik :=


Pik

1−Pii
, for k ∈ N+(i) \ {j},

0, otherwise,

∀i ∈ V \ {j},

and let I denote the (|V | − 1) × (|V | − 1) identity matrix. Note that Q is

well-defined because, from our assumptions, Pii = 1 if and only if i = j and

T = {i}. Furthermore, let R(x) denote the right-hand side column vector

with its i-th element defined as:

R(x)i :=
1

(1−∆ixi)(1− Pii)
∀i ∈ V \ {j}.

Then, the equations of FPTs in the new notations are as follows:

(I −Q)T (x) = R(x).

Since V is finite, the rows of Q sum to at most one, and at least one row

of Q sums to strictly less than one (otherwise, the probability of reaching

state j will be zero), then the absolute value of all eigenvalues of Q is strictly
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less than one (see e.g., Theorem 2.8 of [14]). Thus, (I − Q)−1 exists and is

given by the following geometric series expansion:

(I −Q)−1 =
∞∑
ℓ=0

Qℓ.

Consequently,

T (x) =
∞∑
ℓ=0

QℓR(x).

For i such that x̄i > x̃i, we see that R(x̄)i > R(x̃)i; with the components

being equal otherwise. As each element in Qℓ is non-negative for all ℓ ≥ 0

and R(x̄) ≥ R(x̃), we conclude that T (x̄) ≥ T (x̃), establishing our claim.

Corollary 1. If the assumptions of Theorem 1 hold, then for any interdiction

decision x, we can compute lower and upper bounds on FPTs based on the

inequality: tij (⃗0) ≤ tij(x) ≤ tij (⃗1), where 0⃗ and 1⃗ are the |V |-dimensional

all-zero and all-one vectors, respectively.

3.2. FPT interdiction problem is NP-hard

In this section, we show that problem (2) is NP-hard using a polynomial-

time reduction from vertex cover [15]. Consider the following decision prob-

lems as given below. We assume that all data are rational.

Vertex Cover: Given a simple, undirected graph G = (V,E) and a

positive integer b, does G contain a vertex cover of size at most b? In other

words, is there a subset C with at most b vertices that contains at least one

end point of every edge in G?

FPT Interdiction: Given a digraph D = (V,A), a DTMC {Xn :

n ≥ 0} with state space V and one-step transition probability matrix P ,

interdiction penalties ∆ij ∈ [0, 1) for i ∈ V, j ∈ N+(i), disjoint nonempty
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vertex subsets S, T , a positive integer b, and a positive rational number ℓ,

does there exist a feasible interdiction policy x ∈ B such that tij(x) ≥ ℓ for

all i ∈ S and j ∈ T?

Theorem 2. FPT Interdiction is NP-complete.

Proof. Given an interdiction policy x, in polynomial time we can verify its

feasibility, compute the minimum FPT from S to T using the system of

linear equations (3), and verify whether or not it is at least ℓ. Therefore,

FPT Interdiction belongs to class NP.

We demonstrate a polynomial time reduction from Vertex Cover to

establish NP-hardness. Let ⟨G = (V,E), b⟩ denote the Vertex Cover

instance. Without loss of generality, we assume that G contains no isolated

vertices. We create the digraph by adding self-loops at every vertex of G

and replacing every edge of G with anti-parallel arcs. We also create a new

auxiliary vertex w /∈ V to which every vertex in G has outbound arcs (see

Figure 3). Denote this digraph by D = (V ∪ {w}, A), where,

A :=
⋃

i∈V ∪{w}

{(i, w), (i, i)} ∪
⋃

{i,j}∈E

{(i, j), (j, i)} .

We set S = V , T = {w}, the interdiction budget is b (same as the upper-

bound of the vertex cover instance), and ℓ = 2. We also use a parameter

p ∈ [0, 1) in defining the transition probabilities and interdiction penalties

below, and eventually demonstrate the claim for a sufficiently large p. The

one-step transition probability matrix of the DTMC is defined as follows, for
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each (i, j) ∈ A,

Pij =



0, if i = j ̸= w,

1, if i = j = w,

p, if j = w ̸= i,

(1− p)/di, otherwise,

where, di := |N(i)| is the degree of vertex i and N(i) denotes the neighbor-

hood of vertex i in the vertex cover instance G. Note that the minimum

degree of a vertex in G is at least one. Finally, assume that the interdic-

tion penalties are ∆ij = p for every i ∈ V and j ∈ N+(i). This completely

specifies the FPT Interdiction instance which can be constructed in poly-

nomial time. Note that the constructed interdiction instance also satisfies the

conditions of Theorem 1.

The FPTs for the interdiction instance is given by the following equa-

tions for any interdiction policy x ∈ B and i ∈ V using equation (3) and

substituting ∆i as p or zero as applicable:

tiw(x) =
1

(1− pxi)
+

(1− p)

di

∑
k∈N(i)

tkw(x). (4)

Next we show that the FPT Interdiction instance is a ‘yes’ instance

if and only if G contains a vertex cover of size at most b. Suppose C ⊂ V is

a vertex cover of G containing at most b vertices. Consider the interdiction

policy x in which we interdict vertices in C. We claim that the FPT from

an arbitrary vertex i ∈ S to w is at least 2. We consider two cases: vertex

i ∈ C and vertex i /∈ C.
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1−p
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1−p
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1−p
2

1−p
2

1−p
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p

Figure 3: The digraph obtained by applying our transformation to a complete graph on

three vertices. The self-loop of w with Pww = 1 is not shown to simplify the picture.

Case (i) Vertex i ∈ C: In this case, xi = 1 and the value of the first

passage time is:

tiw(x) =
1

(1− p)
+

(1− p)

di

∑
k∈N(i)

tkw(x)

In this case, if we choose p ≥ 1/2, then tiw(x) ≥ 2.

Case (ii) Vertex i /∈ C: In this case, xi = 0 and xk = 1 for all k ∈ N(i)

as N(i) ⊂ C to cover all the edges incident at vertex i. The FPT in this case

is:

tiw(x) = 1 +
(1− p)

di

∑
k∈N(i)

tkw(x)

= 1 +
(1− p)

di

∑
k∈N(i)

 1

(1− p)
+

(1− p)

dk

∑
j∈N(k)

tjw(x)
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= 2 +
(1− p)2

di

∑
k∈N(i)

1

dk

∑
j∈N(k)

tjw(x).

Thus, tiw(x) ≥ 2 for every i ∈ S, as long as the constant p in the reduction

is chosen so that p ≥ 1/2. The interdiction instance is a ‘yes’ instance.

Now, assume that there is no size-b vertex cover in G. Therefore, for any

interdiction set C of size at most b, there exists an arc (i, j) ∈ A where neither

of the vertices i, j ∈ V are interdicted. Given these particular vertices i and

j, by denoting by Pri[·] := Pr[·|X0 = i] (and analogously for expectations),

the expected value tiw(x) can be equivalently calculated as follows:

tiw(x) = Pri[τw = 1] + 2Pri[τw = 2] + Ei[τw|τw ≥ 3] Pri[τw ≥ 3]. (5)

Note that Pri[τw = 1] = p and

Pri[τw = 2] =
∑

k∈N(i)\C

PikPkw +
∑

k∈N(i)∩C

PikPkw

=
(1− p)

di

∑
k∈N(i)\C

p+
(1− p)

di

∑
k∈N(i)∩C

p(1− p)

=
p(1− p)

di

(
d−i + (1− p)d+i

)
,

where d−i := |N(i) \ C| and d+i := |N(i) ∩ C|. Note that di = d+i + d−i and

di ≥ d−i ≥ 1 as j ∈ N(i) \ C. Moreover,

Pri[τw ≥ 3] = 1− Pri[τw = 1]− Pri[τw = 2]

= (1− p)

(
1− p(d−i + (1− p)d+i )

di

)
, and

it can be verified using (4) that tiw(x) ≤ tiw (⃗1) = 1/(p(1−p)). By exploiting

the Markovian property, this observation implies that:

Ei[τw|τw ≥ 3] ≤ 3 +
1

p(1− p)
.
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Therefore, from (5) we can conclude that:

tiw(x) ≤ p+
1

p
− [p(1− p) + 1][d−i + (1− p)d+i ]

di
+ 3(1− p) (6a)

≤ 3− 2p+
1

p
− p(1− p)

|V |
− 1

|V |
, (6b)

where the last inequality follows as d−i /di ≥ 1/|V | and d+i /di ≥ 0. It can

be checked that if p = 1− 1/|V |2 then the right hand of (6b) is strictly less

than 2 as long as |V | ≥ 3. We have established that if G has no vertex

cover of size at most b, i.e., a ‘no’ instance, then, there exist at least one

i ∈ S with tiw(x) < 2 for any interdiction solution x that removes at most b

vertices. Therefore, the interdiction instance is also a ‘no’ instance and the

result follows.

4. An MILP formulation

In this section we present a mixed-integer linear programming (MILP)

formulation of problem (2). As before, we let a vector of binary decision

variables x ∈ {0, 1}|V | denote the interdiction set {i ∈ V : xi = 1}. For

convenience, we denote by tij the expected first passage time from i to j

after interdiction, i.e., tij ≡ tij(x), and by θ the smallest FPT from S to T .

The optimization problem (2) can be formulated as:

t∗S,T =max θ (7a)∑
i∈V

xi ≤ b (7b)

θ ≤ tij ∀(i, j) ∈ S × T (7c)(
1− Pii −

∑
k∈N+(i)

Pik∆ikxi

)
tij =
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1 +
∑

k∈N+(i)

Pik(1−∆ikxi)tkj ∀(i, j) ∈ V × T : i ̸= j (7d)

tjj = 0 ∀j ∈ V (7e)

tij ≥ 0 ∀(i, j) ∈ V × V (7f)

xi ∈ {0, 1} ∀i ∈ V (7g)

Constraint (7c) requires θ to be smaller than any first passage time in the di-

graph D from S to T . Constraints (7d) and (7e) are essentially equations (3),

except those governing tij for j ∈ V \ T are excluded as they do not impact

FPTs from S to T . This formulation is not linear because of the variable

products in constraint (7d). We introduce variables zij and yij to effectively

replace constraint (7d) with the following equations:

(1− Pii)tij = 1− zij +
∑

k∈N+(i)\{j}

Piktkj

zij = yijxi

yij =
∑

k∈N+(i)

Pik∆iktkj −
∑

k∈N+(i)

Pik∆iktij

The nonlinear equation zij = yijxi is enforced using ‘big-M’ coefficients on

xi and 1− xi in the MILP formulation that follows.

t∗S,T = max θ (8a)∑
i∈V

xi ≤ b (8b)

θ ≤ tij ∀(i, j) ∈ S × T (8c)

(1− Pii)tij = 1− zij + o
∑

k∈N+(i)

Piktkj ∀(i, j) ∈ V × T : i ̸= j (8d)

yij =
∑

k∈N+(i)

Pik∆iktkj −
∑

k∈N+(i)

Pik∆iktij ∀(i, j) ∈ V × T : i ̸= j (8e)
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−Mij(1− xi) ≤ zij − yij ≤ Mij(1− xi) ∀(i, j) ∈ V × T : i ̸= j (8f)

−Mijxi ≤ zij ≤ Mijxi ∀(i, j) ∈ V × T : i ̸= j (8g)

tjj = 0 ∀j ∈ V (8h)

tij ≥ 0 ∀(i, j) ∈ V × V (8i)

xi ∈ {0, 1} ∀i ∈ V. (8j)

To model the correct behavior of constraints (8f) and (8g), for a given

i, j ∈ V , we need Mij to satisfy the following inequality:

Mij ≥
∑

k∈N+(i)

Pik∆iktkj −
∑

k∈N+(i)

Pik∆iktij,

for any feasible solution to formulation (8). For instance, under the assump-

tions of Theorem 1, using Corollary 1 we can compute a valid Mij as:

Mij =
∑

k∈N+(i)

Pik∆itkj (⃗1)−
∑

k∈N+(i)

Pik∆itij (⃗0).

5. Numerical illustration

In this section, we present the results of implementing formulation (8)

in C++, compiled using Microsoft® Visual Studio® 2017, and solved using

GurobiTM Optimizer v9.5.2 [16]. The purpose of these experiments is pri-

marily illustrative, to demonstrate the extent by which FPTs are increased

by interdiction and to show that small- to medium-sized instances can be

solved by the MILP formulation with commercial solvers. Selected graphs

from the Tenth DIMACS Implementation Challenge, which includes some

popular social and biological network benchmarks, were considered in our

test bed. We also included 20 instances used in [17], those we refer to as
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Club instances, which are challenging benchmarks for the maximum k-club

problem. All the graphs in this test bed are undirected, and we convert them

to directed graphs by adding self-loops and replacing edges by anti-parallel

arcs. Experiments are conducted on a 64-bit Windows® 10 Pro machine with

16GB of RAM and a 1.8 GHz processor with 7 cores.

In our experiments, sets S and T are chosen uniformly at random and

their cardinality is equal to 20% of the number of vertices. The interdiction

budget b is also equal to 20% of the number of vertices. For every vertex

i ∈ V , transition probabilities of its outbound arcs and the self-loop are equal

to 1/|N+[i]|. The interdiction penalties are set as ∆ij = 0.5 for every arc

(i, j) ∈ A such that i ̸= j.

We report the results for the DIMACS-10 instances in Table 1. All the

instances in this test bed are solved to optimality at the root node of the

branch-and-bound tree. The percentage increase in the smallest first passage

time as a result of interdiction ranges from 23% (for football) and to 55%

(for celegansm). On this test bed we observe that an optimal interdiction

policy delays the first passage times by significant amounts.

However, by increasing the number of vertices in the graphs, the number

of variables and constraints of formulation (8) increase quadratically. So

for larger networks (e.g., tens of thousands of arcs), the solver encounters

memory crashes even while building the model. Therefore, solving the FPT

interdiction problem for large scale instances will require more specialized

decomposition methods.

The results for the Club instances are reported in Table 2. The main

difference with respect to the DIMACS-10 instances is that there are six
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Table 1: Results of solving formulation (8) using Gurobi. Minimum FPT before and after

interdiction, along with the corresponding percentage increase are reported under column

headings FPT before, FPT after, and % increase, respectively. Wall-clock running time is

reported under column heading Time (in seconds).

Graph |V | |A| FPT before FPT after % increase Time (s)

karate 34 78 56.02 79.56 42.03 0.20

dolphins 62 159 38.77 52.60 35.66 0.38

lesmis 77 254 56.91 81.75 43.66 0.54

polbooks 105 441 54.87 77.67 41.57 1.16

adjnoun 112 425 39.69 57.13 43.96 1.26

football 115 613 100.94 124.38 23.22 2.16

jazz 198 2742 70.85 98.22 38.62 12.88

celegansn 297 2148 231.97 331.90 43.08 31.03

celegansm 453 2025 30.50 47.48 55.66 44.03

email 1133 5451 1011.17 1506.52 48.98 1755.68

add20 2395 7462 3994.62 6433.78 61.06 696.43

instances that are not solved at the root node and there are 11 instances

where either Gomory or RLT cuts are added by the solver. Although there

are several Club instances that utilized general purpose cutting planes to

arrive at an integral optimum (either at the root node or after enumeration),

it is notable that for 9 Club instances and all DIMACS-10 instances the

optimal solution of formulation (8) is obtained at the root node without the

addition of any cutting planes. Our preliminary analysis did not uncover any

simple explanation for this behavior. It would be interesting to see if graph

properties like edge sparsity, low graph degeneracy, or small treewidth of the

underlying graph make the problem easier to solve.
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Table 2: Results of solving formulation (8) using Gurobi. Minimum FPT before and after

interdiction, along with the corresponding percentage increase are reported under column

headings FPT before, FPT after, and % increase, respectively. Wall-clock running time

is reported under column heading Time (in seconds). Columns ‘#BC nodes’ and ‘#Cuts’

respectively report the number of branch-and-cut nodes enumerated and the number of

Gomory cuts added. For instances graph 200 0.15-5 and graph 200 0.15-6, in addition

to the Gomory cuts, one RLT cut is also added.

Graph |V | |A| FPT before FPT after % increase Time (s) #BC nodes #Cuts

graph 200 0.1(1) 200 2015 130.15 164.14 26.12 42.85 1 2

graph 200 0.1(2) 200 1983 140.63 177.29 26.07 58.51 15 2

graph 200 0.1(3) 200 2014 149.08 187.88 26.03 15.04 1 0

graph 200 0.1(4) 200 1956 150.37 189.64 26.12 43.84 1 1

graph 200 0.1(5) 200 2033 114.98 145.45 26.50 15.29 1 0

graph 200 0.1(6) 200 1971 137.71 174.28 26.55 13.19 1 0

graph 200 0.1(7) 200 2029 150.14 189.01 25.89 34.26 1 1

graph 200 0.1(8) 200 2037 135.47 171.27 26.42 139.45 655 3

graph 200 0.1(9) 200 2009 163.60 205.11 25.37 41.33 1 0

graph 200 0.1(10) 200 1999 149.06 189.42 27.08 15.57 1 0

graph 200 0.15(1) 200 2981 143.99 179.77 24.85 25.01 1 0

graph 200 0.15(2) 200 3028 167.13 207.89 24.39 392.63 1131 7

graph 200 0.15(3) 200 2964 149.60 187.78 25.52 23.46 1 0

graph 200 0.15(4) 200 3035 147.04 184.58 25.53 64.55 1 1

graph 200 0.15(5) 200 2887 134.24 167.24 24.58 65.69 1 6

graph 200 0.15(6) 200 3065 153.08 190.58 24.49 83.31 23 1

graph 200 0.15(7) 200 2961 150.08 187.47 24.91 23.88 1 0

graph 200 0.15(8) 200 3055 138.09 172.95 25.25 72.32 3 1

graph 200 0.15(9) 200 2987 143.81 179.50 24.81 49.40 1 0

graph 200 0.15(10) 200 3077 148.62 184.58 24.19 112.94 239 1
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6. Conclusions

We introduced an interdiction model to maximize the minimum first pas-

sage time between two given sets of states in a DTMC. We demonstrate

that the interdiction strategy could be counter-productive in some situa-

tions and provide a sufficient condition that guarantees that interdiction

will not decrease the first passage times. We then established the NP-

hardness of the problem. We present a MILP formulation that can be

used to solve small to medium sized instances of the problem using a com-

mercial solver within minutes. We observed from our preliminary experi-

ments that the interdiction framework we propose is capable of producing

significant increases in the minimum FPT, demonstrating its potential ap-

plicability. It would be interesting in light of some of our computational

results to identify graph classes for which this problem may be polynomi-

ally solvable. More generalized interdiction budget constraints of the form

B :=
{
x ∈ {0, 1}|V | :

∑
(i,j)∈A cij∆ijxi ≤ b

}
could also be explored in specific

applications. In order to ensure that the methodology can scale well in prac-

tice, future work needs to focus on decomposition techniques to solve our

formulation and also explore alternate formulation ideas.
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