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Abstract

In this study, we address the mate selection problem in the hybridization stage

of a breeding pipeline, which constitutes the multi-objective breeding goal key

to the performance of a variety development program. The solution framework

we formulate seeks to ensure that individuals with the most desirable genomic

characteristics are selected to cross in order to maximize the likelihood of the

inheritance of desirable genetic materials to the progeny. Unlike approaches that

use phenotypic values for parental selection and evaluate individuals separately,

we use a criterion that relies on the genetic architecture of traits and evaluates

combinations of genomic information of the pairs of individuals. We introduce

the expected cross value (ECV) criterion that measures the expected number

of desirable alleles for gametes produced by pairs of individuals sampled from

a population of potential parents. We use the ECV criterion to develop an

integer linear programming formulation for the parental selection problem. The

formulation is capable of controlling the inbreeding level between selected mates.

We evaluate the approach or two applications: (i) improving multiple target

traits simultaneously, and (ii) finding a multi-parental solution to design crossing

blocks. We evaluate the performance of the ECV criterion using a simulation

study. Finally, we discuss how the ECV criterion and the proposed integer linear

programming techniques can be applied to improve breeding e�ciency while

maintaining genetic diversity in a breeding program.

2



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

INTRODUCTION

Plant and animal breeding consists of methodologies for the creation, selection, and fixation

of superior phenotypes to fulfill the breeding goals of increasing productivity and financial

returns, improving welfare, and reducing environmental impact Oldenbroek and van der Waaij

(2015). Traditionally, breeders achieve these goals by identifying the individuals with desirable

phenotypes and crossing them to produce the segregation of phenotypes in a new generation

that allows further selection for advancement. This breeding strategy is perpetuated because

high-volume crossing and evaluation led to the identification of the iconic Green Revolution

varieties that successfully doubled rice and wheat yields from the 1960s to 1990s (Hesser 2006),

despite the inevitable ine�ciency of producing a high number of failed crosses. However, the

future of food security and livestock will be driven not only by the demand but also by severe

competition with other uses of land and water resource (Cassandro 2020). Therefore, more

e�cient breeding strategies ought to be considered because making many crosses with the

knowledge that most fail is not justified either by theory or comparative experiments, and is

also socially unacceptable.

Ultimately, the overall objective of a breeding program is to produce lines and varieties that

are genetically homogeneous and perform at a high level, with end-use quality supportive

of the intended market class. A wheat breeding pipeline, for instance, would begin with

assembling parental stocks with a careful examination of available germplasm and donor

traits. In principle, this is to construct and partition parental stocks respective to a specific

goal or goals, to create the genetic variability needed for producing an adapted, high-yielding

pure-line variety with perceived quality demands in the future marketplace.

With the continued advancement of genomic technologies and steady decline in genotyping

costs, breeders are now able to take full advantage of the availability of genetic information

embedded in the genome (He�ner et al. 2010; Hayes et al. 2009). Nevertheless, except
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for the potential application of a higher selection intensity with GEBVs (genomic estimated

breeding values) (Meuwissen et al. 2001), experimental data for the optimal number of

crosses as well as the optimal numbers of progeny to sample from each cross required for

selection as the initial investment to fulfill the breeding goal have not been reported in

the literature (Donald 1968). This is unsurprising given that the number of individuals a

breeding program can phenotypically evaluate is resource-limited (Rincent et al. 2017). For

example, consider a single cross of two genetically distinct parental lines with 100 QTLs

associated with variability among multiple desirable traits. Assuming independent assortment

and co-dominance, the complete population from this single pair of founders will consist

of 3100 ⇡ 5.1 ⇥ 1047 genotypic combinations. Even considering a moderate number of

200 wheat lines in the parental stocks, the number of combinations to be evaluated in the

field is astronomically high (Beans 2020). Consequently, analytical approaches based on

operations research, mathematical optimization, and statistical learning to optimize breeding

decision-making have gained prominence over the years (Johnson et al. 1988; Byrum 2015;

Byrum et al. 2016, 2017; Kusmec et al. 2021).

There are two essential steps to addressing this problem using mathematical optimization.

The first is to define a fitness criterion to evaluate individuals or crosses based on genetic

information. The second step is to devise a mathematical optimization framework that

incorporates the fitness criterion along with other essential requirements of the breeding

program, and whose objective is to find the individuals or crosses that maximize the fitness

criterion. The mathematical optimization framework, while faithfully capturing the various

breeding requirements and objectives, must also be computationally viable in order for it to

be useful in practice.

In contrast to addressing these breeding challenges in a traditional phenotype-centric

paradigm, genetic improvement can also be more e�ciently achieved by transferring desirable

alleles from parents to progeny as a genetic process while avoiding alleles that show antagonistic

4



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

pleiotropic e�ects. Therefore, our aim is to devise a multi-objective mathematical optimization

framework that targets more than one phenotype and generates multiple crosses that identify

a set of best parental pairs from populations to address multiple breeding goals simultaneously.

As it is to be expected in any non-trivial multi-criteria decision-making setting, the criteria

(breeding objectives) can be mutually conflicting, making it challenging to design an e�ective

multi-objective optimization framework. For example, yield production in wheat has been

found to be negatively correlated with grain protein content (Simmonds 1995), which is an

essential factor for its commercial demand (Visscher et al. 1996). This makes concurrently

fulfilling breeding goals of high yielding and protein content di�cult. The negative correlation

between the mass of beef cows and various measures of fertility and stayability could have

attributed to the increasing concerns about compromised reproductive e�ciency as a result

of selection for growth (Berry and Evans 2014; Mwansa et al. 2002).

In this study, we propose a new fitness criterion called the expected cross value (ECV)

that is inspired by a related fitness criterion called predicted cross value (PCV) introduced

by Han et al. (2017). ECV returns a probabilistic measure of the fitness of the progeny of a

specific pair of individuals based on the genetic architecture of trait variation. We consider

the complexity of genetic architecture that underlies agronomic performance characteristics

and develop an integer linear programming formulation of the parental pair selection problem

that optimizes the ECV criterion. We further extend its capability to select multiple pairs of

parents. Our optimization framework is based on the genetic transmission of all detectable

genetic loci and can mitigate the potential impact of crossing within highly related individuals.

Based on simulation studies, we demonstrate that using ECV as a fitness criterion would

address the limitations of other related approaches for mate selection problems, and our

multi-objective methodology can simultaneously improve a group of target phenotypic traits.
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METHODS

We begin with some preliminaries needed to formally define the expected cross value (ECV)

as a new fitness criterion for the mate selection problem. Considering all diploid and polyploid

species that may behave as diploids cytologically, e.g., bread wheat (Riley and Chapman 1958),

we assume that the variability of target traits is governed by segregating alleles at N di�erent

loci of all chromosomes in the genome. We use the index set notation [a] := {1, 2, . . . , a}

for a positive integer a, and define the genotype matrix next.

Definition 1. Given an individual k , we define its genotype matrix Lk as an N ⇥ 2 binary

matrix with the i , j-th entry for every i 2 [N] and j 2 [2] given by:

Lki,j =

8
><

>:

1, if the allele in locus i of gamete from parent j is desirable,

0, otherwise.
(1)

Genotype matrix information of all individuals is an input for the ECV. Hereafter, we refer

to the allele in QTL i as the i -th allele for ease of discussion. In our simulations, alleles are

desirable when they enhance the trait value, assuming larger the positive value, the better.

Observe that each column of Lk represents a gamete from one of the parents of individual k .

We model how alleles transfer from parents to children, i.e., how a gamete inherits alleles

from the parent, by using a random N-dimensional binary vector J, with each component

being a random variable Ji for each i 2 [N] defined as follows:

Ji =

8
><

>:

0, if the i -th allele is transferred from the first column of Lk to the gamete,

1, otherwise.

(2)

For a given individual k and QTL i , random variable Ji determines which of the gametes that

comprise the genome of individual k will transfer the allele in the i -th locus.
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Definition 2 (Han et al. (2017)). We say that the random vector J 2 {0, 1}N follows an

inheritance distribution with parameters r 2 [0, 0.5]N�1 and ↵0, denoted by J ⇠ I(r,↵0), if

and only if

Pr(J1 = 0) = ↵0, Pr(J1 = 1) = 1� ↵0, (3)

Pr(Ji = Ji�1) = 1� ri�1, Pr(Ji = 1� Ji�1) = ri�1, 8i 2 [N] and i � 2. (4)

In Definition 2, the (N�1)-dimensional vector r 2 [0, 0.5]N�1 represents the recombination

frequencies between the consecutive pairs of loci. The value of ri is the probability that

the i -th and (i + 1)-th alleles come from di�erent gametes that comprise the genome of

individual k . Note that if ri = 0 for all i 2 [N� 1], then the gamete produced by individual k

is identical to exactly one of the parental gametes, while the maximum possible recombination

between gametes is expected to be observed when ri = 0.5 for all i 2 [N � 1].

Deriving the closed-form marginal inheritance distributions

Given J ⇠ I(r,↵0), we now derive the marginal distribution of Ji for each i 2 [N]. The

closed-form expressions so obtained then allow us to compute the expectations required to

obtain a general closed-form expression for the ECV. For each i 2 [N], define the recursive

function �i : RN�1 �! R as follows:

�1(r) = 0, �2(r) = r1, (5)

�i(r) = ri�1 + (1� 2ri�1)�i�1(r), 8i 2 {3, 4, . . . , N}. (6)

Proposition 1. Suppose that J ⇠ I(r,↵0). Then, for each i 2 [N], the marginal distribution

7
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of Ji satisfies the following equations:

Pr(Ji = 0) = ↵0 + (1� 2↵0)�i(r), (7a)

Pr(Ji = 1) = 1� ↵0 + (2↵0 � 1)�i(r). (7b)

Proposition 1 (proved in the Supplement) establishes the marginal distributions through a

recursion, which can be used to obtain a closed-form expression. This result can be further

simplified using the laws of inheritance that the allele pairs of a locus segregate randomly

during meiosis, and each allele transmits to the gamete with equal probability. Specifically,

Proposition 1 then implies the following corollary.

Corollary 1. Assume that Mendel’s second law holds and ↵0 = 0.5. Then,

Pr(Ji = 0) = Pr(Ji = 1) = 0.5, 8i 2 [N]. (8)

Furthermore,

E(Ji) = 0⇥ Pr(Ji = 0) + 1⇥ Pr(Ji = 1) = 0.5, 8i 2 [N], (9)

where E(·) represents the expectation operator.

The gamete and loss functions

The inheritance distribution characterizes the source of alleles transmitted from a parent to

its gametes. Therefore, we can define a so-called gamete function to specify the alleles in the

gamete according to the inheritance distribution. Given this gamete function, we derive a

closed-form expression for the ECV of a pair of individuals.

Definition 3 (Han et al. (2017)). Given an individual with genotype matrix L and a vector

8
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J ⇠ I(r,↵0), the vector-valued gamete function gam : (L, J) 7! g outputs the binary

gamete vector g defined as follows for each i 2 [N]:

gi =

8
><

>:

Li ,1, if Ji = 0,

Li ,2, if Ji = 1.
(10)

Equivalently, gi = Li ,1(1� Ji) + Li ,2Ji .

Suppose we have two individuals with genotype matrices L1 and L2, and two independent

random vectors J1, J2 ⇠ I(r,↵0). By crossing these two individuals, the genotype matrix

for a child in the progeny is given by matrix [g1, g2] where g1 = gam(L1, J1) and g2 =

gam(L2, J2). Then, the gamete that is produced by a child of this progeny for the next

generation is given by:

g3 = gam
�⇥
g1, g2

⇤
, J3

�
, (11)

where J3 ⇠ I(r,↵0) is independent of J1 and J2. Below, we define a loss function in terms

of the g3 gamete vector that will lead us to the ECV criterion.

Definition 4. Suppose L1 and L2 are the genotype matrices of two individuals and let Jk ,

k = 1, 2, 3, be independent random vectors following the distribution I(r,↵0) for some given

r and ↵0. Let gk = gam(Lk , Jk) for k = 1, 2 and g3 = gam([g1, g2], J3). We define the

loss function associated with L1, L2, r , and ↵0 as the following random variable:

loss(L1, L2, r,↵0) =
NX

i=1

(1� g3i ) = N �
NX

i=1

g3i . (12)

The loss function counts the number of undesirable alleles in the gamete g3. If the loss

function is equal to 0, then all alleles in g3 are desirable, while the opposite is true if it is

equal to N. Before deriving our ECV criterion, we introduce the related PCV criterion of Han

9
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et al. (2017).

Definition 5 (Han et al. (2017)). Let L1 and L2 be the genotype matrices of two individuals,

and let r and ↵0 be given. Define the gamete g3 using Equation (11). Then, the PCV

associated with L1, L2, r , and ↵0 is the probability that the gamete g3 contains only desirable

alleles. That is,

PCV(L1, L2, r,↵0) = Pr
�
loss(L1, L2, r,↵0) = 0

�
. (13)

The expected cross value criterion

Next, we use the loss function in Definition 4 to define the ECV, an alternative criterion to

PCV, based on allelic information of individuals. The measure depends on the gamete g3

defined in Equation (11) and can evaluate a pair of individuals that could be mated.

Definition 6. For a selected pair of individuals with genotype matrices L1 and L2, the ECV

is the expected number of desirable alleles in gamete g3 defined in Equation (11). As the loss

function represents the number of undesirable alleles in g3, the ECV can be computed as:

ECV(L1, L2, r,↵0) = N � E
�
loss(L1, L2, r,↵0)

�
= E

✓ NX

i=1

g3i

◆
. (14)

A pair of individuals with the highest ECV value could be selected as parents for crossing.

Theorem 1 (proved in the supplement) constitutes our main result that provides a closed-form

expression for calculating ECV for a pair of parents.

Theorem 1. Assume Mendel’s second law holds true and let L1 and L2 be the genotype

matrices of two individuals. The ECV corresponding to the desired phenotypic trait can be

10
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computed using the following equation:

ECV(L1, L2, r, 0.5) = 0.25
NX

i=1

(L1i ,1 + L
1
i ,2 + L

2
i ,1 + L

2
i ,2). (15)

Remark 1. Without relying on Mendel’s second law, the ECV can still be computed in

closed-form more generally as:

ECV(L1, L2, r,↵0) =
NX

i=1

✓
L1i ,1 + [1� ↵0 + (2↵0 � 1)�i(r)](L1i ,2 � 2L1i ,1 + L2i ,1)

+ [1� ↵0 + (2↵0 � 1)�i(r)]2(L2i ,2 + L1i ,1 � L1i ,2 � L2i ,1)
◆
.

Theorem 1 provides a closed-form expression for the ECV criterion that enables us to

formulate the parental selection problem as an integer linear program.

Single-trait parental selection problem

We develop an integer programming (IP) formulation for the parental selection problem using

the ECV criterion as the single optimization objective (see Supplementary Formulation (27))

and the constraint system (and decision variables) from the mixed-integer programming

formulation for the PCV introduced by Han et al. (2017). The formulation finds the best pair

of individuals maximizing the ECV criterion based on a desired phenotypic trait. In addition,

we restrict the inbreeding between selected individuals by preventing pairs of individuals with

a su�ciently large inbreeding value from being selected as parents. By using the marker

genotype information we can construct the genomic matrix G that quantifies the genomic

relationship between any pair of individuals in the population (VanRaden 2008). Any pair

in the population that has a genomic relationship (i.e., inbreeding value) higher than a

pre-determined parameter ✏, will be excluded from the set of feasible pairs using a family of

constraints we include in the formulation.

11
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In a breeding program, we may also seek to find multiple pairs for crossing, rather than

just a single pair. In order to do so, we introduce Supplementary Algorithm 1 that iteratively

solves our IP formulation for the single-trait parental pair selection problem. Note that solving

the Supplementary Formulation (27) will identify a pair of individuals as the optimal solution

for the problem. By adding “conflict constraints” corresponding to this optimal pair to the

formulation, we can exclude just this optimal solution from the set of feasible solutions and

reoptimize to find the next optimal pair. We can repeat this process until the required number

of pairs have been chosen for the crossing program (assuming that many solutions exist).

The flowchart in Figure 1 illustrates the workflow of the proposed ECV approach for

mate selection problems for a single trait. The process begins with an initial population

where genetic marker and QTL information are available for the selection of parental lines

to assemble the crossing block to advance specific breeding targets (Velu and Singh 2013).

The ECV criteria can be optimized over several generations (denoted by T in Figure 1). In

each generation, genomic information related to QTLs and genetic markers, along with a

genetic relationship matrix (G) is used for constructing the optimization model detailed in

Supplementary Formulation (27), and solving it to find an optimal set of mating pairs for

crossing. The workflow for solving the multi-trait parental selection by optimizing the ECV

metric mirrors the process in in Figure 1 for single-trait ECV optimization. The key di�erence

is that we solve the Supplementary Formulation (29) via lexicographic optimization with

user-specified degradation tolerances as described in detail in the Supplement.

Multi-trait parental selection problem

In general, breeders may be interested in improving several phenotypic traits simultaneously.

In this case, we need to extend the ECV criterion to account for multiple traits. We assume

there are M target traits in the breeding program and that the `-th desired trait for every

12
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` 2 [M] is a�ected by N` di�erent QTL in the genome. For each individual we define M

genotype matrices, one for each trait. Each such matrix is an N` ⇥ 2 binary matrix in which

each row represents the pair of alleles in the corresponding genetic locus. Thus, we extend

the previous definitions as follows.

Definition 7. For k 2 [K] and ` 2 [M], the genotype matrix Lk,` associated with the k-th

individual and the `-th trait is defined as:

Lk,`i ,j =

8
><

>:

1 if i -th allele of gamete from parent j is desirable for trait `,

0 otherwise.
8i 2 [N`], j 2 [2].

(16)

Consider two individuals with genotype matrices L1,` and L2,` for target trait ` 2 [M], and

suppose that we have three independent random vectors J1, J2 and J3 following an inheritance

distribution I(r,↵0). Using the definition of gamete function (10), the genotype matrix

corresponding to the `-th trait for a child in the progeny is represented by matrix [g1,`,g2,`]

where g1,` = gam(L1,`, J1) and g2,` = gam(L2,`, J2). The gamete that is produced by this

progeny for the next generation is then given by:

g3,` = gam
�⇥
g1,`, g2,`

⇤
, J3

�
. (17)

Definition 8. For the `-th target trait and a selected pair of individuals with genotype

matrices L1,` and L2,`, the ECV ` is the expected number of desirable alleles of trait ` in

gamete g3,`. Following Equation (17), ECV `, for each ` 2 [M] is defined as:

ECV `(L1,`, L2,`, r,↵0) = N` � E
�
loss(L1`, L2,`, r,↵0)

�
= E

✓ NX̀

i=1

g3,`i

◆
. (18)

Following Theorem 1, we can obtain a closed-form expression for ECV ` function.

13
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Theorem 2. Assume Mendel’s second law holds true and let ` 2 [M]. Then, for a selected

pair of individuals with genotype matrices L1,` and L2,`, the ECV corresponding to the `-th

target phenotypic trait can be computed as:

ECV`(L1,`, L2,`, r, 0.5) = 0.25
NX̀

i=1

(L1,`i ,1 + L
1,`
i ,2 + L

2,`
i ,1 + L

2,`
i ,2). (19)

Ideally, a breeding program would like to select parental pair(s) that simultaneously optimize

all the ECV` functions. Such an optimum is not likely to exist in practice because some

phenotypic traits are negatively correlated. Therefore, improving one trait might worsen

others. In order to achieve a reasonable trade-o�, one turns to the theory of multi-objective

optimization.

Consider a vector of objective functions F (t, x) = hf1(t, x1), f2(t, x2), . . . , fM(t, xM)i

where f`(t, x `) denotes the ECV function (19) corresponding to `-th trait. Supplementary

Formulation (29) for the multi-trait parental selection problem seeks to find a pair of

individuals that will “maximize” the vector-valued objective function. Similar to the single-

trait optimization model, this formulation also excludes pairs of individuals with genomic

relationship exceeding the tolerance threshold from the set of feasible solutions. Furthermore,

as explained in the previous section, this approach can also be extended to select multiple

parental pairs for the breeding program by iteratively adding conflict constraints. The

di�erences lie in the handling of multiple traits, especially in the vector objective function.

Multi-objective or vector optimization problems are commonly handled by scalarization—

converting the vector optimization problem into one or more scalar optimization problems (Mi-

ettinen 2012; Sawaragi et al. 1985); see survey by Miettinen et al. (2016) for interactive and

other methods. One approach is to use a weighted combination of the individual objective

functions to produce an optimization problem with a scalar objective. The weights, which

are predetermined by the user, need to be carefully chosen to ensure they reflect the rela-
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tive importance of the individual objectives and also scale them appropriately as necessary.

Another approach, lexicographic optimization, prioritizes the objective functions based on

their importance and optimizes them sequentially, starting with the most important. While

optimizing lower priority objectives, we restrict the feasible region to only those solutions that

will not degrade the higher priority objectives, or limit their degradation by user-specified

tolerances.

The weighted sum approach, where we aggregate the individual objectives into a single

objective using user-defined weights, requires a vector of weights that capture the importance

of each phenotypic trait in the breeding program. In practice, it is di�cult to identify a precise

and meaningful weight for each trait as there are many factors of the breeding program (some

of them potentially unknown) that might play a role in defining it. By contrast, it might be

simpler for a breeding program to order the traits based on their importance.

The lexicographic optimization approach is not without drawbacks, as it could degenerate

into single-objective optimization with the highest priority objective if we subsequently allow

no degradation of higher priority objectives. In the worst case, if the first objective has a

unique optimal solution and we tolerate no degradation on the first objective, the subsequent

objectives are irrelevant. The use of tolerance is therefore important as it allows limited

degradation of a higher priority objective when optimizing a lower priority objective, but allows

for a larger feasible solution space for the lower priority objective (when compared against

using zero tolerance). Hence, we will be using lexicographic maximization with positive

tolerances in solving Supplementary Formulation (29).

Assume without loss of generality that the vector of objective functions, F (t, x) =

hf`(t, x `)iM`=1, is already in decreasing order of importance. Thus trait ` is more important

than trait ` + 1, for each ` 2 [M � 1]. The solver we use in our computational studies is

capable of lexicographic optimization with degradation tolerances for objectives specified by

the decision maker. Let us denote these tolerances by ⌧ = (⌧1, ⌧2, . . . , ⌧M), where ⌧` 2 [0, 1]
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for each trait ` 2 [M]. The solver optimizes the first objective function f1(t, x) and then,

among those feasible solutions within a factor (1� ⌧1) of the optimal objective value of the

first objective function, optimizes the second objective function. This process is repeated until

the last objective is optimized. In particular, this method assures that the optimal solution for

the `-th objective, for ` = 2, . . . ,M, is within a factor (1� ⌧i) of the optimal value of the

i -th objective, for every i 2 [`� 1]. As fM(t, xM) is the last objective function to optimize,

there is no need for a tolerance ⌧M , and hence we set ⌧M = 0 for all our experiments.

Simulation study

Simulations were conducted to evaluate the performance of ECV compared to other parent

selection approaches using phenotypes and breeding values (GEBV). Two simulation experi-

ments were considered in this study. First, we considered a single-trait optimization problem

to solely improve Trait 1, simulated as a mixture of traits with oligogenic and polygenic

genetic architectures. Next, we examined a multiple-trait parent selection problem where

the breeding program was tasked to simultaneously improve all traits of interest. In this

experiment, we simulated a polygenic architecture for Trait 3, representing a trait such as

yielding capacity that is usually governed by a large number of loci where each allele has a

small impact on the expression of the trait and in a negative genetic correlation with Trait 1,

in addition to an oligogenic phenotype (Trait 2) that may imitate the genetic architecture

underlying disease resistance.

For all experiments, two metrics were reported from the simulations, average desirable allele

frequency and average phenotypic trait values of the progeny, to compare the performance of

the methods in each generation. We also recorded the average genomic relationship for the

selected individuals for all three approaches. In the case of multi-parental pair selection, we

sorted pairs of individuals based on the summation of their trait values or GEBVs and made
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selection decisions based on the summations of trait values. Moreover, by default, there was

no control over the genomic relationship between selected parent pairs for the phenotypic

selection and GEBV selection approaches; however, we assumed that self-crossing is not a

feasible choice in these approaches.

The QU-GENE engine and QuLinePlus proposed by Ali et al. (2020) were used to simulate

initial populations and the progeny in the subsequent generations. The QU-GENE engine

establishes the initial population with inputs of genetic e�ects for segregating alleles, recombi-

nation frequencies and the number of desired individuals. We considered an initial population

such that the allele frequency at all loci was set at 0.5. In our experiments, QuLinePlus took

the genotypic information of a population and a list of selected pairs, simulated the progeny

by crossing the selected parental pairs, and output genotypic and phenotypic information for

all individuals in the subsequent generation. The GEBVs were calculated using the “rrBLUP”

package (Endelman 2011). The Gurobi Optimization Solver (Gurobi Optimization, LLC 2024)

was used to solve the integer linear programming formulations that were implemented in the

Python programming language.

The initial population consisted of 10,000 individuals, with 200 biallelic genetic loci and

100 markers. Of these, 40 genetic loci had e�ects on Trait 1, 10 on Trait 2, and 70 on Trait

3. The markers had no genetic e�ects on any of the traits. Trait 3 and Trait 1 share 20

common loci with pleiotropic e�ects, which resulted in a negative correlation between those

phenotypic traits. We conducted all of the experiments for four generations and for each

cross we simulated 100 progeny for the next generation. We performed two sets of simulation

studies, assuming a consistent growing environment across generations. In the first simulation

study, the number of parental pairs that we chose from the initial population, generations

one, two, and three, was 50, 10, 5, and 5, respectively. Thus, the population size in the

simulation studies for generations one, two, three and four were, respectively, 5,000, 1,000,

500, and 500, respectively.

17



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

To further investigate the e�ectiveness of our methodology, we explored the impact of

selection intensity in our second simulation study. Scenario A imposed a higher selection

intensity with 50 crosses made from the initial population (generation 0), and 10, 3, and

3, respectively, for generations one, two, and three. For intermediate selection intensity

(Scenario B, same as the first simulation study), from the initial population, generations one,

two, and three, we chose 50, 10, 5, and 5 parental pairs, respectively. Finally, in Scenario C,

representing a case of reduced selection intensity, the numbers of parental pairs selected in

generation one was 25, and 5 parental pairs for the generations two and three.

RESULTS

The single-trait simulation results over five generations are summarized in Figure 2. For all

traits considered, ECV significantly increased the proportion of desirable alleles (see Figure 2a)

while showing the capacity to regulate the relatedness within the breeding population by

avoiding crossing closely related individuals (see Figure 2c). Further, although statistically

insignificant, genetic crosses done by phenotypically superior individuals returned the lowest

means of the progeny in all traits, compared to genetics-informed approaches, like GEBVs and

ECV (see Figure 2b). However, populations generated by ECV provided a greater potential

for advancing individuals with larger phenotypic values.

Single-trait optimization does not guarantee improvement for phenotypes other than the

target trait. Figure 3 shows boxplots for Trait 2 and Trait 3 when we optimize Trait 1 in a

single-trait ECV optimization framework. The frequency for the desirable allele (Figure 3a)

as well as the phenotypic values (Figure 3b) remained unimproved for Trait 2. The scenario

could be worse if target traits are determined by QTLs with antagonistic pleiotropic e�ects.

This can be seen in Figures 3c and 3d, which depict a significant decrease in the proportion

of desirable alleles and phenotypic values of Trait 3 as a result of optimizing for Trait 1.
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For multi-trait parental selection based on ECV, we employed the lexicographic multi-

objective optimization approach described earlier. The tolerances were chosen based on

preliminary experiments as follows: let ⌧i ,c denote the degradation tolerance for optimization

objective i in generation c , then we used ⌧1,0 = 0.17, ⌧1,1 = 0.05, ⌧1,2 = 0.05, ⌧1,3 = 0.05

and ⌧2,0 = 0.00, ⌧2,1 = 0.00, ⌧2,2 = 0.00, ⌧2,3 = 0.05. In general, the tolerance parameters

can be calibrated to have the desired impact on the model. The results in Figure 4 show the

advantage of using ECV. Despite the negative genetic correlation, ECV was able to increase

the desirable allele frequency to 0.70 (±0.02), 0.65 (±0.08), and 0.72 (±0.01), for Trait 1,

Trait 2, and Trait 3, respectively. In contrast, the impact of negative correlation between

Trait 3 and Trait 1 was most obvious when the phenotypic selection was used, leading to

a significant loss of desirable allele for Trait 1 (see Figure 4a). Similarly, ECV improved

phenotypic values of the progeny for all traits simultaneously, whereas no improvement for

Trait 1 and Trait 2 was found using phenotypic selection in our simulations when the tolerances

were set slightly favoring Trait 3. It is noteworthy that a genomics-informed selection method,

GEBV, returned comparable results to ECV for Trait 1. This benefit of GEBV, however, is at

the expense of genetic diversity, as shown in Figure 5. Genomic relatedness (VanRaden 2008)

has increased noticeably over the four generations using the GEBV selection method.

Figure 6 displays the boxplots for the three selection intensity scenarios A, B, and C

introduced in the Simulation study, focusing on the proportion of desirable alleles as the

performance metric. In the early generations, particularly generation 2, our proposed ECV

approach outperformed other selection strategies, most evidently for Traits 1 and 3 in the

implementation of multiple trait selection. As the generations advanced, the ECV approach

continued to excel in Scenarios B and C, resulting in higher proportion of desirable alleles

for Traits 1 and 3. In Scenario A, where selection intensity was higher and ECV selection

method was not dominant, the method still yielded replications with a greater proportion of

desirable alleles compared to other strategies, despite the genomic relationship constraints
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inherent in the ECV method. Furthermore, in the last generation under scenario A, the

mean (± standard deviation) of genomic relatedness over all replications for the ECV, GEBV,

and Phenotypic selection approaches are 0.15 (±0.04), 0.42 (±0.10), and 0.25 (±0.10),

respectively. These results illustrate the e�ectiveness of our ECV optimization framework,

with its explicit constraints limiting genomic relatedness, in managing genomic relatedness

over generations when selection intensity is higher, while improving desirable breeding traits.

The impact of higher selection intensity, however, led to greater variability in the proportion

of desirable alleles in Trait 3 of Scenario A, which could be due to the drift e�ect of the

smaller breeding population size (Turner-Hissong et al. 2020).

DISCUSSION

The principal objective of breeding is to combine as many desirable traits as possible into a

genotype that can be distributed to farmers, producers or breeders. For example, in plant

breeding the breeders are tasked with developing elite genotypes that display desirable use

characteristics including high yields, disease resistance, and are also well-adapted to a range of

environmental conditions (Breseghello and Coelho 2013). These desirable characteristics are

typically possessed by multiple founders. By mixing and recombining founder genomes, the

distribution of these desirable phenotypes observed in the o�spring, owing to the segregation of

alleles often distributed throughout the genome, allow breeders to identify superior individuals

for subsequent breeding, widespread evaluations, and sales.

However, when these desired characteristics di�er in variability, heritability, economic

importance, and are correlated with other phenotypes and genotypes, e�ective mating designs

capable of improving multiple traits simultaneously can be challenging to identify (Johnson

et al. 1988). This breeding process is also ine�ective as breeders tend to make hundreds or

thousands of crosses, of which only a few are advanced in the subsequent years (Witcombe
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et al. 2013). Traditionally, these objectives are achieved by breeding from the “best”—the best

being determined by their own phenotypic values (Allard 1999; Akdemir et al. 2019). More

advanced techniques, such as pedigree-based (Henderson 1984; Gianola and Fernando 1986),

marker-based genetic value predictions (Lande and Thompson 1990; Hospital and Charcosset

1997; Bernardo and Charcosset 2006), and mating designs by genomic information (Akdemir

and Sánchez 2016) are also available.

Beginning with the work of Johnson et al. (1988), mathematical programming approaches

have facilitated the improvement of genetic traits through the use of mathematical optimization

models that aid breeders in making better decisions in selecting mating parents. Toro et al.

(1991) solved mate selection problems using linear programming techniques and demonstrated

the e�ectiveness of their approach within multiple ovulation and embryo transfer (MOET)

breeding schemes for dairy cattle with the help of simulation studies. Jansen and Wilton

(1985) addressed the issue of factorial growth in the number of combinations to cross by

formulating and solving an integer programming model to improve the overall progeny merit.

Moeinizade et al. (2019) recently proposed a single-trait optimization of a “look ahead”

metric that focuses on a predetermined terminal generation to optimize mating decisions for

maximizing expected GEBVs in the terminal generation without explicitly considering the

impact of genetic erosion. Amini et al. (2021) further improved this look-ahead framework by

prioritizing best individuals for crossing and using multiple prediction algorithms to improve

prediction accuracy. These approaches are also complemented by Zhang and Wang (2022)

who proposed a “net present value” inspired mechanism for discounting future gains, which

values early-term genetic gains more than those anticipated in the future. This was done to

overcome a drawback of the original look-ahead scheme by Moeinizade et al. (2019), which

can produce slow genetic gains in the early generations and accelerating more rapidly as we

approach the terminal generation.

Byrum et al. (2016) report on their long-term development and quantification of an unbiased
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genetic gain performance metric, and pioneered its use in evaluating breeding projects as

varieties were developed. Byrum et al. (2016) and Byrum et al. (2017) demonstrate the

successful commercial use of advanced analytics and operations research tools such as integer

linear programming, Monte Carlo simulation, and stochastic optimization by the agriculture

industry, which has served to further motivate its broader use in many areas of crop and

animal sciences; see also (Byrum 2015, 2016).

Furthermore, when the breeding objective involves more than one trait, a selection index of

progeny merit was considered as a linear function of estimated breeding values for each trait

by Allaire (1980). In animal breeding, for instance, the genetic merit of calves is estimated as

half of the sire’s and half of the dam’s breeding value. An optimization-based procedure for

mate selection in animal breeding is introduced by Kinghorn (1998, 2011) based on a mate

selection criterion proposed by Kinghorn and Shepherd (1999).

In the genomics era, the parental selection problem has been increasingly addressed with

the use of genomic relationships (Sun et al. 2013), heuristic searches for gene pyramiding (De

Beukelaer et al. 2015), and by modeling the recombination of desirable alleles as a result

of crossing (Han et al. 2017; Moeinizade et al. 2019). For the purpose of introgressing a

small number of desirable alleles from a donor to a recipient, Han et al. (2017) proposed

an e�cient algorithm for calculating the PCV defined as the probability that a gamete of a

random progeny from crossing two genetic individuals would consist only of desirable alleles.

In a specific case where the desirable allele for the i -th locus is not present in both parents

(denoted by k and k 0), such that Lki,1 = Lki,2 = Lk
0
i ,1 = L

k 0
i ,2 = 0, PCV will conclude that the

i -th component of gamete g3 is zero with probability one and hence PCV (Lk , Lk 0, r,↵0) = 0.

In this case, the individuals k and k 0 will not be selected, regardless whether or not there

maybe be desirable alleles present in the rest of the genome. While such a result is desirable

for the goals of introgressing a small number of alleles for traits like herbicide, disease, or

insect resistance, it would be inappropriate for identifying crosses that will have the best

22



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

opportunity to combine a large number of genetic alleles. Considering the polygenic inheritance

of agronomical performance traits (Lynch and Walsh 1998; Scott et al. 2021), the PCV

approaches zero for all breeding parents as the number of loci with desirable alleles increases.

Consider the following probabilistic inequality (Fréchet inequality):

PCV(Lk , Lk
0
, r,↵0 = 0.5) = Pr

�
g3i = 1 8i 2 [N]

�
 min
i2[N]
Pr(g3i = 1). (20)

Hence, the larger the value of N, the greater the chance Lki,1 = Lki,2 = Lk
0
i ,1 = L

k 0
i ,2 = 0 for

some QTL i . The PCV method could therefore lead to indiscriminate mate selection for

traits that have hundreds or thousands of loci with desirable alleles because the PCV value is

(nearly) zero for essentially any choice of mates. This observation motivated us to introduce

our ECV criterion, especially for breeding targets governed by a large number of genetic loci

and for non-introgression projects.

As Figure 2a shows, our results demonstrated a significantly greater capacity to increase

desirable allele frequency compared to the conventional phenotypic selection and the selection

done by the genomics-derived GEBV; and, the benefit of using ECV can be realized in as

short as two generations. Moreover, the greater range of trait value distribution presents

additional opportunities for breeders to identify the superiors for population advancement

(see Figure 2b).

Based on our simulations, we observe that the breeding population has gone from unrelated

to essentially full-sibs in three generations of selecting breeding parents based on GEBVs (see

Figure 2c). Compared to the phenotypic selection, GEBV selection might have manifested

a rapid increase of relatedness by crossing individuals closely related to the training popula-

tion (Bassi et al. 2016; Forutan et al. 2018). Though GEBV selection might show a capacity

to provide short-term genetic gain, selecting breeding parents solely by GEBVs would lead

to undesirable consequences such as loss of genetic diversity, further diminishing long-term
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genetic gain (Jannink 2010; Doekes et al. 2018).

To ensure the capacity to preserve multiple genetic lineages, ECV allows for the selection

of more than one pair of individuals, and while self-crossing was not allowed in this study, our

method permitted the same individual to be crossed with multiple breeding parents as long

as the genomic relationship of the parents was not greater than ✏, a parameter that breeders

can use to control how much inbreeding is acceptable.

Fundamental to all variety improvement programs is the identification of the most e�cient

path to reach breeding objectives (Bernardo 2002; Akdemir et al. 2019). However, breeders

are usually tasked with combining a suite of traits in addition to yield and growth components.

The negative genetic correlations caused by the non-random association of alleles underlying

these breeding objectives impose additional challenges, as selecting based on one trait may

adversely impact another (Lynch and Walsh 1998). To simultaneously improve multiple traits,

phenotype-based selection indices have been widely considered (Hazel and Lush 1942; Hazel

et al. 1994; Villanueva and Woolliams 1997; Jannink et al. 2000; Moeinizade et al. 2020).

Selecting breeding parents based on a selection index does not necessarily choose the best

genetics to recombine; further, since the selection index applied is a weight assignment of

target phenotypes, such decisions could result in the loss of beneficial alleles.

In this study, the proposed ECV framework is based on an allele transmission process.

Rather than relying on the phenotypes of breeding parents, ECV identifies the crosses with

the highest likelihood of transmitting desirable alleles from pairs of parents to the progeny. In

the case where multiple traits need to be considered simultaneously, ECV seeks the optimal

combination of alleles for all target phenotypes ordered by their importance, while maintaining

a customizable tolerance such that QTLs with antagonistic pleiotropic gene action could

remain in consideration before the final breeding recommendation is made. Figure 4 and

6 showed that despite the negative correlation between Traits 1 and 3, ECV was able to

increase desirable allele frequency for all traits in our simulation studies. In addition, as
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seen from Figure 5, the inbreeding coe�cient in the progeny was regulated as ECV was

optimized with the tolerance constraint on the genomic relatedness between breeding parents.

As genotyping has become routine in breeding programs (Hayes and Goddard 2010; Bentley

et al. 2022), the application of this constraint ought to be considered to mitigate the multiple

trait scenario in Figure 4, where the gain might be built at the expense of genetic diversity

(Figure 5), a phenomenon also found in index selection methods (Akdemir et al. 2019). If

practical considerations favor breeding parents to be selected from a narrow genetic pool, the

constraint could be moved to the objective as a penalty term.

Breeding programs develop elite genotypes that often demonstrate similar essential genomic

profiles of desirable end-use characteristics, agronomical attributes, disease resistance packages,

as well as adaptation to the target environment. Breeding among the elites can produce

new variability as the source of new cultivars with minimal risk of introducing undesirable

features. This variation may eventually be exhausted, and new genes and alleles must be

introduced. Identifying beneficial alleles from un-adapted material itself has been described

as searching for a needle in a haystack (Pixley et al. 2014). Introgressing these novel alleles

can also be risky because the unwanted alleles in exotic germplasm may distrupt essential

allele combinations (Willcox et al. 2022); and, it requires a higher institutional cost due

to a greater number of crosses and longer breeding cycle needed to achieve the breeding

objectives (Snelling et al. 2019; Neyhart et al. 2019). Based on our simulations, we reckon

that ECV can be an option.

Beyond animal and cereal crop breeding, we suspect that implementing optimization-based

methods like ECV could be advantageous to breeding of genetically diverse, long-generation,

and slow reaction, cross-pollinated species, such as conifers. Tree breeders generally establish

open-pollinated seed orchards for selection (White et al. 2007), and several mating designs

have been proposed (Namkoong 1976; Zobel and Talbert 1984), among which the polycross

is considered as one of the most cost-e�ective (Kumar et al. 2007; Lenz et al. 2020). The
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ability to design the pollen pool while managing inbreeding with ECV will provide the capacity

to rapidly increase desirable allele frequencies and, at the same time, avoid severe inbreeding

depression for conifer species (Berry and Evans 2014; Mwansa et al. 2002; Snelling et al.

2019).

The conceptual framework we have introduced and our results show that adopting multi-

objective optimization tools from operations research to solve breeding problems is highly

advantageous (Cameron et al. 2017; Beans 2020; Kusmec et al. 2021). Several improvements

or extensions suggested next should also be considered. When the pool of genetic diversity

increases, solving integer programming problems for ECV will require further development

to account for di�erent distributions of crossover events in di�erent crosses (Stapley et al.

2017; Nachman 2002; Jabbari et al. 2019; Dreissig et al. 2019). Furthermore, as multi-parent

populations like MAGIC (multi-parent advanced generation inter-cross) have become a means

to provide germplasm for breeding programs (Scott et al. 2020), there is a need to expand

optimization frameworks such as ECV to consider multiple parental lineages, which might

also help guide the polycross mating design in forestry (Frandsen 1940; Lambeth et al. 2001).

Our proposed methodology relies on the the underlying genetic information of the breeding

population, such as QTLs and genetic association of desirable traits. While a�ordable

large-scale genotyping and phenotyping technologies are becoming accessible to breeding

programs (Reynolds et al. 2020; Bassi et al. 2024), large breeding populations necessitate

extensive genomic information, which can be computationally demanding. Moreover, integer

linear programming is NP-hard in general, making it challenging to solve very large-scale

problems to optimality. In the case of mate selection, the size of the population and the

number of genes directly influence the computational time, which implies that massive

datasets could make obtaining optimal solutions unrealistic for practical applications. In such

circumstances, we may consider modifying our approach to solving the integer linear program

by employing decomposition techniques to address the large-scale instances and likely settle
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for sub-optimal (but good quality) feasible solutions.

Our simulations also indicate that the ECV selection framework may result in higher

performance variability when the selection intensifies in earlier generations. To alleviate

this issue, we could either relax the genomic relatedness constraint (smaller ✏) in earlier

generations or intensify selection only in advanced generations. Further, care must also be

taken in choosing the degradation tolerances ⌧` for each trait ` 2 [M] in the lexicographic

multi-trait ECV optimization framework, which will entail computational expenditure in terms

of preliminary computational experiments, which could become challenging at larger scales.
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PROOFS

Proof of Proposition 1

We model the random vector J that follows an inheritance distribution as a discrete time

Markov chain (DTMC) with J =
{
Jn : n ≥ 0

}
where Jn represents the state of the process

at n-th step, i.e., the value of the random vector J in the n-th position, with the state space

{0, 1}. This process is not a time-homogeneous DTMC. According to Equation (4) in the

main article, the transition probability matrix from step k to step k + 1 is as follows:

Pk:k+1 =


0 1

0 1− rk rk

1 rk 1− rk

 ∀k ∈ [N − 1].

The transition probability matrix from the first step 1 to step i ∈ [N − 1] is then given by:

P1:i =

i−1∏
k=1

Pk:k+1.

We claim that:

P1:i =

1− φi(r) φi(r)

φi(r) 1− φi(r)

 , (21)

where φi(r) is defined in Equations (5) and (6) in the main article. We prove this claim by

induction on i . The claim holds for the base case i = 2 by definition, because according to

Equation (5) in the main article, φ2(r) = r1. Let us suppose Equation (21) holds for step
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i = n. By induction hypothesis, we know that:

P1:n =

1− φn(r) φn(r)

φn(r) 1− φn(r)

 .
As P1:n+1 = P1:nPn:n+1, we obtain the following:

P1:n+1 =

1− φn(r) φn(r)

φn(r) 1− φn(r)


1− rn rn

rn 1− rn


=

1− rn − φn(r) + 2rnφn(r) rn − 2rnφn(r) + φn(r)

rn − 2rnφn(r) + φn(r) 1− rn − φn(r) + 2rnφn(r)

 .
=

1− φn+1(r) φn+1(r)

φn+1(r) 1− φn+1(r)

 ,
establishing the claim in Equation (21).

The DTMC J satisfies the following property (Kulkarni 2016):

Pr(Ji = j) =
(
α⊤P1:i

)
j

∀i ∈ {2, 3, . . . , N}, j ∈ {0, 1}, (22)

where α⊤ = [α0, α1] is the vector of initial probabilities and
(
α⊤P1:i

)
j

denotes the (j +1)-th

component of the row vector α⊤P1:i . Thus, for every i ∈ {2, 3, . . . , N},

Pr(Ji = 0)
Pr(Ji = 1)


⊤

=

α0
α1


⊤ 1− φi(r) φi(r)

φi(r) 1− φi(r)

 =
α0 + (α1 − α0)φi(r)
α1 + (α0 − α1)φi(r)


⊤

.

Proposition 1 follows by noting that α0 + α1 = 1.
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Proof of Theorem 1

We use the definition in Equation (14) in the main article to find a closed-form expression for

the ECV. Let L1 and L2 be the genotype matrices for the selected pair of individuals, and

let J1 ,J2 and J3 be three independent samples from the inheritance distribution. We know

that g3 = gam
([
g1, g2

]
, J3
)

where g1 = gam
(
L1, J1

)
and g2 = gam

(
L2, J2

)
. Based on

the definition of inheritance distribution in Definition 3 in the main article, we have,

g1i = L
1
i ,1(1− J1i ) + L1i ,2J1i ∀i ∈ [N], (23)

g2i = L
2
i ,1(1− J2i ) + L2i ,2J2i ∀i ∈ [N], and, (24)

g3i = g
1
i (1− J3i ) + g2i J3i ∀i ∈ [N]. (25)

Substitutions in Equation (25) using Equations (23) and (24) yields the expected cross value

for the target trait as:

E

(
N∑
i=1

g3i

)
= E

(
N∑
i=1

[
L1i ,1(1− J1i ) + L1i ,2J1i

]
(1− J3i ) +

[
L2i ,1(1− J2i ) + L2i ,2J2i

]
J3i

)

= E

(
N∑
i=1

L1i ,1 +
(
L1i ,2 − L1i ,1

)
J1i − L1i ,1J3i −

(
Lk,i ,2 − L

1
i ,1

)
J1i J

3
i +

L2i ,1J
3
i +

(
L2i ,2 − L2i ,1

)
J2i J

3
i

)

=

N∑
i=1

[
L1i ,1 +

(
L1i ,2 − L1i ,1

)
E(J1i )− L1i ,1E(J3i )−

(
L1i ,2 − L1i ,1

)
E(J1i J3i )+

L2i ,1E(J3i ) +
(
L2i ,2 − L2i ,1

)
E(J2i J3i )

]
.

From Proposition 1 we know that,

E(J1i ) = E(J2i ) = E(J3i ) = α1 + (α0 − α1)φi(r) ∀i ∈ [N].
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As J1, J2 and J3 are independent, we know that,

E(J1i J3i ) = E(J1i )E(J3i ) = (α1 + (α0 − α1)φi(r))2 ∀i ∈ [N],

E(J2i J3i ) = E(J2i )E(J3i ) = (α1 + (α0 − α1)φi(r))2 ∀i ∈ [N].

Thus,

E

(
N∑
i=1

g3i

)
=

N∑
i=1

(
L1i ,1 + [α1 + (α0 − α1)φi(r)](L1i ,2 − 2L1i ,1 + L2i ,1)

+ [α1 + (α0 − α1)φi(r)]2(L2i ,2 + L1i ,1 − L1i ,2 − L2i ,1)
)
. (26)

Assuming α0 = α1 = 0.5 based on Mendel’s second law, Equation (26) reduces to Equa-

tion (15) claimed in the main article.

FORMULATIONS

Mathematical formulation for single-trait parental selection

Following Han et al. (2017), we use the following notations in our integer programming (IP)

formulation (27). We use ECV as our objective function and add constraints to restrict

inbreeding.

Parameters:

• K ∈ Z≥0: Number of individuals in the population

• N ∈ Z≥0: Number of QTL for the target trait

• G: K ×K genomic matrix of inbreeding values with elements gk,k ′ for k, k ′ ∈ [K]

• ϵ ∈ R+: Inbreeding tolerance on a pair of selected individuals
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Decision variables:

• t ∈ B2×K representing the parental selection decision where,

tm,k =

 1, if k-th individual is selected as m-th parent,

0, otherwise,
∀m ∈ [2], k ∈ [K].

• x ∈ BN×4 representing genotypes of selected individuals. If we suppose that the k-th

and k ′-th individuals are selected as first and second parents respectively, i.e., t1,k = 1

and t2,k ′ = 1, then:

xi ,j = L
k
i,j , ∀i ∈ [N], j ∈ {1, 2},

xi ,j = L
k ′

i ,j , ∀i ∈ [N], j ∈ {3, 4}.

Objective function: Using Equation (15) in the main article, the ECV can be expressed as

a function of the decision variables as: f (t, x) = 0.25
N∑
i=1

4∑
j=1

xi ,j .
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Formulation:

max 0.25

N∑
i=1

4∑
j=1

xi ,j (27a)

s.t.
K∑
k=1

tm,k = 1 ∀m ∈ [2] (27b)

xi ,j =

K∑
k=1

t1,kL
k
i,j ∀i ∈ [N], j ∈ {1, 2} (27c)

xi ,j =

K∑
k=1

t2,kL
k
i,j−2 ∀i ∈ [N], j ∈ {3, 4} (27d)

t1,k + t2,k ′ ≤ 1 ∀k, k ′ ∈ [K] such that gk,k ′ ≥ ϵ (27e)

tm,k ∈ {0, 1} ∀m ∈ [2], k ∈ [K] (27f)

xi ,j ∈ {0, 1} ∀i ∈ [N], j ∈ [4] (27g)

The objective function (27a) maximizes the ECV. Constraint (27b) ensures that exactly two

individuals will be selected for the crossing. Constraints (27c) and (27d) assign genotypic infor-

mation in genotype matrices of the selected individuals to the xi ,j variables. Constraint (27e)

ensures that two individuals with genomic relationship coefficient greater than the tolerance ϵ

will not be selected simultaneously as parents. As the genomic relationship coefficient between

any individual with itself has the highest value of one, this set of constraints will prevent

self-crossing between individuals for any value of ϵ less than one. Finally, constraints (27f)

and (27g) force decision variables to take binary values.

Algorithm for selecting multiple parental pairs

Suppose we are interested in finding nc different parental pairs from the population. Assuming

that self-crossing is not allowed, we denote the number of feasible solutions (crosses) by nf ,

which is bounded above by
(
K
2

)
. As we impose a constraint for controlling inbreeding, the

7



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

number of feasible crosses might be strictly less than
(
K
2

)
. Specifically, the number of feasible

solutions (feasible crosses) is precisely half the number of off-diagonal elements in matrix G

that are smaller than ϵ.

If there is no element in matrix G that is smaller than ϵ, then nf = 0 and formulation (27)

is infeasible. In this case, we need to increase the value of tolerance ϵ such that there might

be at least nf possible crosses for the selection. Then, any positive integer value for nc such

that nc ≤ nf is suitable for our approach.

Assume that after solving the single-trait formulation (27), we find that in the optimal

solution we have t∗1,k = t∗2,k ′ = 1. This solution means that k-th and k ’-th individuals are

optimal parents that should be crossed. To obtain another pair of parents from the model, we

can add the following “conflict constraints” to the single-parent single-trait formulation (27):

t1,k + t2,k ′ ≤ 1 and t1,k ′ + t2,k ≤ 1. (28)

These two constraints will exclude this pair of individuals, k, k ′, from being selected if

we reoptimize formulation (27) with these additional conflict constraints. We can repeat

this procedure to find nc pairs by accumulating the appropriate set of conflict constraints

corresponding to individuals selected in the previous iteration. The procedure is summarized

in Algorithm 1.

Algorithm 1 Finding multiple pairs for the parental selection problem
1: Input: Appropriate nc (assumed to be no larger than nf ), G, P, ϵ
2: Output: Set S of selected parental pairs
3: S ← ∅
4: while |S| < nc do
5: Solve formulation (27) and obtain optimal solutions t∗1,k = t∗2,k ′ = 1.
6: Add the pair {k, k ′} to set S.
7: Update the formulation by adding the constraints: t1,k + t2,k ′ ≤ 1, t1,k ′ + t2,k ≤ 1.
8: end while
9: return S
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Mathematical formulation for multi-trait parental selection

Additional parameters:

• M ∈ Z≥0: Number of target traits for the breeding program

• Nℓ ∈ Z≥0: Number of QTL for the ℓ-th trait ∀ℓ ∈ [M]

Additional decision variables:

• x ℓ ∈ BNℓ×4 representing genotypes of selected individuals for each trait ℓ ∈ [M]. If we

suppose k-th and k ′-th individuals are selected as first and second parents, so t1,k = 1

and t2,k ′ = 1, then:

x ℓi,j = L
k,ℓ
i ,j ∀i ∈ [Nℓ], j ∈ {1, 2}, ℓ ∈ [M],

x ℓi,j = L
k ′,ℓ
i ,j ∀i ∈ [Nℓ], j ∈ {3, 4}, ℓ ∈ [M].

Objective function: We define the ECV corresponding to the ℓ-th trait as a function

of the decision variables as: fℓ(t, x ℓ) = 0.25
Nℓ∑
i=1

4∑
j=1

x ℓi,j . The components of the objective

function vector F (t, x) = ⟨f1(t, x1), . . . , fM(t, xM)⟩ are in decreasing order of importance.

Thus, trait ℓ is more important than trait ℓ+ 1, for each ℓ ∈ [M − 1]. Note that we denote

the collection of variables ⟨x1, . . . , xM⟩ succinctly as x .
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Formulation:

lexmax F (t, x) = ⟨f1(t, x1), . . . , fM(t, xM)⟩, (29a)

s.t.
K∑
k=1

tm,k = 1 ∀m ∈ {1, 2} (29b)

x ℓi,j =

K∑
k=1

t1,kL
k,ℓ
i ,j ∀i ∈ [Nℓ], j ∈ {1, 2}, ℓ ∈ [M] (29c)

x ℓi,j =

K∑
k=1

t2,kL
k,ℓ
i ,j−2 ∀i ∈ [Nℓ], j ∈ {3, 4}, ℓ ∈ [M] (29d)

t1,k + t2,k ′ ≤ 1 ∀k, k ′ ∈ [K] such that gk,k ′ ≥ ϵ (29e)

tm,k ∈ {0, 1} ∀m ∈ {1, 2}, k ∈ [K] (29f)

x ℓi,j ∈ {0, 1} ∀i ∈ [Nℓ], j ∈ [4], ℓ ∈ [M] (29g)

The multi-objective optimization formulation (29) for the multi-trait parental selection

problem lexicographically maximizes the vector of ECV functions corresponding to each trait.

We describe this approach in greater detail in the next section. Constraint (29b) states

that exactly two individuals will be selected for crossing. Constraints (29c) and (29d) will

assign genotypes of selected individuals to x ℓi,j variables. Constraint (29e) implies that any

two individuals with an inbreeding coefficient greater than tolerance ϵ can not be selected

as parents for the crossing program. Note that since the inbreeding coefficient between any

individual and itself has the highest value (which equals one), for any value of ϵ less than one,

this set of constraints will prevent self-crossing between individuals. Finally, constraints (29f)

and (29g) enforce decision variables to take binary values.
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Lexicographic multi-objective optimization with degradation

tolerances

Define a vector of tolerances τ = (τ1, τ2, . . . , τM) such that τℓ ∈ [0, 1] for all ℓ ∈ [M]. Since

we do not need degradation for the last objective, we set τM = 0. Tolerance τℓ represents

the allowable degradation for the ℓ-th objective function. Let us assume that χ1 is the set

of feasible solutions based on the constraints of formulation (29). Let z∗1 be the optimal

objective value for the first objective function f1(t, x1) over all feasible solutions in set χ1.

That is,

z∗1 = max{f1(t, x1) | (t, x) ∈ χ1}. (30)

As the tolerance for the first objective is τ1, the set of feasible solutions for the second

objective is given by:

χ2 = {(t, x) ∈ χ1 | f1(t, x1) ≥ (1− τ1)z∗1}, (31)

and the best objective value for the second objective function is:

z∗2 = max{f2(t, x2) | (t, x) ∈ χ2}. (32)

Generally, the set of feasible solutions for the ℓ+1-th objective function and its best objective

value are as follows:

χℓ+1 = {(t, x) ∈ χℓ | fℓ(t, x ℓ) ≥ (1− τℓ)z∗ℓ } ∀ℓ ∈ [M − 1], (33)

z∗ℓ+1 = max{fℓ+1(t, x ℓ+1) | (t, x) ∈ χℓ+1} ∀ℓ ∈ [M − 1]. (34)
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The set of “tolerance-optimal” solutions for the problem is given by:

χ∗ = argmax
(t,x)∈χM

fM(t, x
M). (35)

By construction, the feasible sets satisfy the following relationship:

χ∗ ⊆ χM ⊆ χM−1 ⊆ · · · ⊆ χ2 ⊆ χ1. (36)

An optimal solution in multi-objective optimization is called an efficient or non-dominated

solution based on some domination structure chosen by the decision maker (Sawaragi et al.

1985). Arguably, the most well-known notion of efficiency is Pareto optimality. We say that

the solution (t̂ , x̂) is Pareto optimal (or non-dominated) if there is no feasible solution (t, x)

to Formulation (29) such that F (t, x) ≥ F (t̂ , x̂) and fℓ(t, x) > fℓ(t̂ , x̂) for at least one trait

ℓ (Miettinen et al. 2016).

As we show using the next result, the set of tolerance-optimal solutions χ∗ is guaranteed

to contain Pareto optimal solutions. Furthermore, if (t, x) ∈ χ∗ then, either (t, x) is Pareto

optimal or it is dominated by a Pareto optimal solution in χ∗.

Proposition 1. Every solution (t∗, x∗) ∈ χ∗ is either Pareto optimal, or it is dominated by a

Pareto optimal solution in χ∗.

Proof. If (t∗, x∗) ∈ χ∗ is not Pareto optimal, then there exists a Pareto optimal solution

(t ′, x ′) ∈ χ1 that dominates (t∗, x∗). Note that the existence of such a solution follows from

the finiteness of χ1. We prove that (t ′, x ′) ∈ χ∗ by contradiction.

Suppose (t ′, x ′) /∈ χ∗. Then, there exists i ∈ [M] such that (t ′, x ′) ∈ χi and (t ′, x ′) /∈ χi+1

(where χM+1 = χ∗). Therefore,

fi(t
′, x ′i) < (1− τi)z∗i . (37)
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If i = M, we arrive at a contradiction because inequality (37) implies that (t ′, x ′) does not

dominate (t∗, x∗). (Recall that τM = 0.)

Now suppose, i ∈ [M − 1]. By Equation (36), we know that (t∗, x∗) ∈ χ∗ ⊆ χi+1, and

that,

(1− τi)z∗i ≤ fi(t∗, x∗i). (38)

Inequalities (37) and (38) imply that,

fi(t
′, x ′i) < fi(t

∗, x∗i). (39)

Again, contradicting the assumption that (t ′, x ′) dominates (t∗, x∗). This implies that every

Pareto optimal solution (t ′, x ′) that dominates (t∗, x∗) belongs to χ∗.

Based on Proposition 1, if we seek a Pareto optimal solution, we can guarantee the

identification of one by carrying out an additional step and solving one more optimization

problem given by:

max

∑
ℓ∈[M]

fℓ(t, x
ℓ) | (t, x) ∈ χ∗

 .
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