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ABSTRACT
Mortality rate refers to the overall likelihood of death within a specific population
over a defined period. The knowledge of high mortality rate disease clusters can
enable healthcare providers and patients to be proactive and develop tailored inter-
ventions that improve patient outcomes. In this paper, we introduce a methodology
for systematically incorporating electronic health record data in an optimization
framework to find cliques of comorbid diseases that correspond to the highest mor-
tality rates among a given patient population. To this end, we introduce the max-
imum mortality rate clique problem and devise two approaches to solve it: (i) we
formulate a mathematical optimization model that maximizes a fractional objective
function subject to linear constraints in binary variables, which we reformulate as
a mixed-integer linear program and solve using a commercial solver with delayed
constraint generation, and (ii) we design an enumerative combinatorial algorithm
based on the classical Bron–Kerbosch algorithm for enumerating maximal cliques.
We conduct a detailed computational study and report results from our experiments
with both approaches on a test bed of instances derived from millions of de-identified
patient electronic health records.

KEYWORDS
Clique enumeration; Bron–Kerbosch algorithm; Fractional programming; Mortality
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1. Introduction

Mortality rate, the fraction of deceased patients who had a particular disease or group
of diseases, is a metric of broad interest in medicine, epidemiology, and public health.
Analyzing the mortality rates among patients with multiple illnesses enables health-
care providers to devise effective strategies for patient care. The notion commonly
used to discuss the presence of multiple diseases in a single patient is known as co-
morbidity. Comorbidity assumes particular significance in the context of mortality, as
the interaction between two or more diseases can result in health outcomes that differ
from those produced by each disease on its own (Feinstein, 1970). Individuals expe-
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riencing multiple health issues often confront an elevated mortality risk attributed to
the interplay among their conditions. Therefore, it is imperative to take comorbidities
into account when estimating mortality rates.

Gijsen et al. (2001) conducted a comprehensive review of existing literature to
identify causes and consequences of comorbidity, with a strong emphasis on how co-
morbidity influences mortality rates. Comorbidity was consistently associated with
increased mortality rates, underscoring its impact on patient outcomes. Previous re-
search indicates that patients who have been diagnosed with diseases such as my-
ocardial infarction, diabetes, chronic obstructive pulmonary disease, chronic kidney
disease, dementia, depression, hip fracture, stroke, colorectal cancer, and lung cancer,
are at an elevated risk of developing heart failure, which can ultimately lead to fatal
outcomes (Ahluwalia et al., 2012). This connection between various diseases and heart
failure is particularly noteworthy as a majority of reported cases in the United States
involve heart-related diseases and cancer (Xu, Murphy, Kochanek, & Arias, 2016).
The importance of detecting comorbid diseases is underscored by Braunstein et al.
(2003) in their study which highlights that elderly patients with chronic heart failure
often succumb to non-cardiac conditions. Their research suggests that identifying and
addressing these non-cardiac conditions in heart patients can lead to improved health
outcomes. In a population-based cohort study undertaken by Corraini et al. (2018),
the impact of comorbidity on post-stroke mortality rates was investigated. Their find-
ings showed that comorbidity, particularly conditions such as cancer, advanced renal
disease, or liver disease, significantly increased one-year mortality rates after a stroke.
Additionally, Redelmeier, Tan, and Booth (1998) argue that the presence of a crit-
ical disease in a patient can monopolize healthcare attention, potentially leading to
the neglect of unrelated diseases. Hence, taking comorbidities into account can sig-
nificantly enhance a patient’s overall condition and, in turn, contribute to the overall
improvement of the healthcare system.

Identifying comorbidities in the form of disease clusters with a high mortality
rate can have several benefits in epidemiology, health policy, healthcare management,
and public health planning to monitor and analyze trends in health and disease. With
the knowledge of such disease clusters, healthcare providers can anticipate the onset
of diseases early and intervene proactively, significantly enhancing the likelihood of
successful treatment and lowering mortality rates. Efficient resource allocation becomes
possible as health system administrators can direct resources towards treating diseases
more likely to lead to death, ultimately improving overall patient outcomes.

Moreover, the identification of high mortality rate clusters can serve as a catalyst
for further research into their joint impact, the underlying causes of these diseases,
and potential treatments, thereby fostering the development of new therapies and
improving patient well-being. Public health officials can leverage this information to
identify high-risk geographic areas or populations, and design targeted interventions
aimed at reducing mortality rates within those communities, thereby promoting overall
public health.

Although comorbidities have been studied before in specific clinical contexts,
availability of large-scale electronic health records affords the opportunity to identify
a variety of such disease clusters that have led to increased mortality rates across
the full spectrum of diseases. This multifaceted approach, combining clinical insights
and public health strategies, represents a potent tool for improving healthcare and
reducing mortality on multiple fronts.

Our main contributions in this article address a gap in the healthcare analytics
literature by developing an optimization-based analytical framework for the problem of
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finding clusters of comorbid diseases with high mortality rates. We introduce a unified
framework for analyzing large-scale electronic health records to find lethal comor-
bidities by framing the question of interest as a combinatorial optimization problem.
We then develop two exact algorithmic approaches for solving the problem that are
evaluated in a computational study.

The remainder of this paper is structured as follows. In Section 2, we provide a
brief review of prior work related to mortality rates and comorbidity analysis, followed
by a formal statement of the optimization problem of interest in Section 3. In Sec-
tion 4, we present two methodologies for solving the optimization problem of interest.
We describe the process used to develop the dataset used in our study in Section 5.
Then, we assess the effectiveness of our proposed approaches, examine their scalability,
and identify the most lethal cliques in our dataset in Section 6. We conclude in Sec-
tion 7 with a discussion of our contributions, the implications for healthcare research,
limitations of our study, and identify some directions for future research.

2. Related work

Analytical approaches leveraging comorbidities in studying mortality rates are pre-
dominantly statistical in nature. In this section, we briefly review some statistical and
empirical studies that focused on the impact of comorbidities on mortality rates.

Zolbanin, Delen, and Zadeh (2015) demonstrate that considering comorbidity will
improve the prediction performance of the models developed to forecast the survivabil-
ity rate of patients with cancer. Various related studies have explored comorbidities
with a particular emphasis on gender-related factors (Short, Yang, & Jenkins, 2013).
A majority of studies in the literature primarily aim to identify comorbidities linked
to specific conditions like diabetes, obesity, and cancer, among others (Holguin, Folch,
Redd, & Mannino, 2005; Leontiadis, Molloy-Bland, Moayyedi, & Howden, 2013; Mar-
rie et al., 2015). For example, Van Gestel et al. (2013) investigated the impact of
comorbidity and age on postoperative mortality in gastrointestinal cancer patients.
Their study found that comorbidity and older age were associated with early postop-
erative mortality after cancer resection. The presence of specific comorbidities such as
cardiovascular diseases had a significant impact on 30-day mortality rates.

Koskinen et al. (2022) employed a data-driven approach to analyze comorbidity
patterns in a wide range of common diseases. Their study identified disease-specific pa-
tient subgroups with distinctive diagnosis patterns, survival functions, and laboratory
correlates. This research emphasized the heterogeneity within disease populations and
the need for personalized care and risk assessment. W. S. Lu and Tsutakawa (1996)
proposed a mixed Poisson regression model for analyzing mortality data, placing par-
ticular emphasis on understanding age-specific and age-standardized mortality rates.
Their approach utilized a marginal quasi-likelihood function to estimate mortality
rates in an empirical Bayes manner. This method aimed to improve the practicality of
analyzing mortality data, emphasizing marginal mortality rates for diseases like lung
cancer. Y. Lu, Chen, Miao, Delen, and Gin (2021) modeled comorbidities as temporal
disease networks to visualize comorbidity progression and to identify critical points in
the progression timeline using clustering techniques.

The literature contains plenty of medical, statistical, and empirical evidence es-
tablishing the impact of comorbidities on mortality rates. However, we are unable
to find optimization-based decision-support tools capable of dealing with a massive
database of electronic health records, which can expand the toolkit of healthcare prac-
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titioners. This is where our most significant contributions lie. We introduce the opti-
mization problem of interest formally in the next section.

3. Problem statement

We formalize as an optimization problem, the problem of identifying disease clusters
that correspond to high mortality rates among patients represented by the electronic
health record (EHR) dataset under consideration. It is not necessary that this dataset
represent the general population and we can filter patients in or out based on additional
criteria like age groups, demographics, geographical location, presence or absence of a
particular disease, or any combination thereof. We assume EHR data is available that
contains the relevant information and lay the groundwork for our problem statement
next.

3.1. Notations and definitions

We denote the set of patients encountered within the time frame covered by the EHRs
as P , and those who died within this time frame are represented by rP Ď P . Let
V denote the set of diseases diagnosed in the patients in P . We assume both sets
are minimal in the sense that each patient in the set P is affected by at least one
disease from the set V and each disease from set V afflicts at least one patient in
P . To capture the incidence of diseases in patients, we use disease-patient incidence
sets, where Au Ď P represents the subset of patients afflicted with disease u P V . For
convenience, we also use a patient-disease incidence set, where Di Ď V denotes the
subset of diseases afflicting patient i P P .

We formalize the notion of disease comorbidity, as it has been in some prior works,
using a graph representation (Hidalgo, Blumm, Barabási, & Christakis, 2009; Kalgotra,
Sharda, & Croff, 2017; Y. Lu et al., 2021). Given an EHR dataset documenting patient
encounters over a specified time frame, we can construct a comorbidity graph G “

pV,Eq in which the vertex set V represents the set of diseases and the edge set E
contains an edge tu, vu if and only if diseases u and v have frequent co-occurrence
among patients in the EHR data.

A clique, which is a subset of pairwise adjacent vertices, is used to model a cluster
of comorbid diseases in this study. Given a non-empty clique of diseases C Ď V , its
mortality rate µpCq can be defined as follows (Porta, 2014):

µpCq “

ˇ

ˇ

ˇ

ˇ

rP X
Ş

uPC

Au

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ş

uPC

Au

ˇ

ˇ

ˇ

ˇ

, (1)

where µpCq is taken to be zero if the denominator vanishes. Implicit in this definition
is that µpCq is associated with a particular length of time over which the EHRs are
acquired. We remark that this definition of mortality rate is a suitable metric for our
decision-support problem, but variants that focus on specific age groups (e.g., infant),
geographical locations, conditions (e.g., maternal), diseases (e.g., COVID-19), time
periods (e.g., 1-year, 30-day) are also widely used in other studies (Baud et al., 2020;
Chen, Normand, Wang, & Krumholz, 2011; Marshall, 2018; Osmond, 1985).

4



3.2. The maximum mortality rate clique problem

Given positive integers b, ℓ, our problem of interest is to find a clique C in G with at
most b diseases that at least ℓ patients in the data set are simultaneously afflicted by,
for which the mortality rate µpCq is a maximum. That is, we aim to solve the following
optimization problem:

max

#

µpCq : C is a clique in G, |C| ď b,

ˇ

ˇ

ˇ

ˇ

ˇ

č

uPC

Au

ˇ

ˇ

ˇ

ˇ

ˇ

ě ℓ

+

. (2)

The upper-bound b on clique size ensures that we identify smaller clusters associated
with elevated mortality rates, as they hold greater diagnostic significance. It is usually
the case that the mortality rates are higher for patients that have a large number of
comorbidities. The lower-bound ℓ on the number of patients simultaneously afflicted
with all diseases in C ensures that the calculated mortality rate µpCq is a reliable and
indicative estimate from this dataset.

A variant of problem (2) is to identify a maximum marginal mortality rate clique.
Given a clique of diseases, we are interested in identifying diseases, the addition of
which maximizes the overall mortality rate of the new clique. This further enhances
the prognosis potential of this methodology for patient populations already afflicted
with some diseases. Specifically, given a pre-established clique of strictly fewer than b
diseases denoted by C0, we aim to identify at most b ´ |C0| additional disease(s) that
maintain the clique property when added to C0 and maximize the mortality rate of
the new clique. That is, we now aim to solve the following optimization problem:

max

#

µpCq : C is a clique in G,C Ě C0, |C| ď b,

ˇ

ˇ

ˇ

ˇ

ˇ

č

uPC

Au

ˇ

ˇ

ˇ

ˇ

ˇ

ě ℓ

+

. (3)

It is easy to see that the maximum marginal mortality rate clique problem (3) includes
optimization problem (2) as a special case, obtained when C0 “ H. Next, we introduce
two methods for exactly solving the maximum mortality rate clique problem, which
can be easily extended to solve the marginal mortality rate counterpart.

4. Methodology

At the outset, we must recognize that the mortality rate function µ : 2V ÝÑ R` is
neither additive nor monotonic. For some v P V zC,

µpC Y tvuq “

ˇ

ˇ

ˇ

ˇ

rP X
Ş

uPC

Au X Av

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ş

uPC

Au X Av

ˇ

ˇ

ˇ

ˇ

, (4)

implying that µpCYtvuq is not separable into µpCq`gptvuq for some function gp.q that
depends on v (and is independent of C). The addition of a new disease v to C decreases
the numerator and denominator of µpCq by potentially different amounts. Although
the decrease in the numerator is no larger than the decrease in the denominator, µp.q
is not monotonic as µpC Y tvuq and µpCq are incomparable as we elaborate next.
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Trivially, µpC Y tvuq “ µpCq if Av Ě
Ş

uPC

Au. Suppose that is not the case and
Ş

uPC

AuzAv is nonempty. Let κa and κe correspond to the number of patients alive and

deceased, respectively, of the total number of patients that have all the diseases in C

but not disease v, i.e., κa ` κe “

ˇ

ˇ

ˇ

ˇ

Ş

uPC

AuzAv

ˇ

ˇ

ˇ

ˇ

. We can rewrite equation (4) as,

µpC Y tvuq “

ˇ

ˇ

ˇ

ˇ

rP X
Ş

uPC

Au

ˇ

ˇ

ˇ

ˇ

´ κe
ˇ

ˇ

ˇ

ˇ

Ş

uPC

Au

ˇ

ˇ

ˇ

ˇ

´ κa ´ κe

.

It is easy to see that if κa “ 1 and κe “ 0, then µpC Y tvuq ą µpCq. Alternately,

if κa “ 0 and κe “ 1, then assuming

ˇ

ˇ

ˇ

ˇ

Ş

uPC

Au

ˇ

ˇ

ˇ

ˇ

´ κe ě 1 and µpCq ą 0, we can deduce

that µpC Y tvuq ď µpCq as µpCq ď 1.
This characteristic of the mortality rate function is an impediment to the de-

velopment of exact combinatorial branch-and-bound or dynamic programming algo-
rithms that usually exploit such properties. A mixed-integer linear program (MILP)
is therefore a natural choice to model and solve problem (3). Furthermore, as we are
specifically interested in cliques of small sizes with high mortality rates, an enumer-
ative algorithm could potentially be a practical choice. Hence, we approach the task
of solving combinatorial optimization problems (2) and (3) to identify a maximum
(marginal) mortality rate clique in the comorbidity graph G using the following two
methodologies: the first involves modeling the problem as a mathematical optimiza-
tion formulation that maximizes a single fractional objective function subject to linear
constraints in binary variables, then linearizing it to an MILP and developing decom-
position techniques that can be implemented using a general purpose MILP solver,
while the other approach is to design a recursive algorithm that enumerates cliques of
size at most b.

4.1. An MILP formulation and delayed constraint generation

The maximum mortality rate clique problem (2) is formulated in (5). We use the binary
decision variable xj “ 1 to indicate that disease j P V is selected in the clique; xj “ 0
otherwise. For each patient i P P , we can associate a binary variable yi “ 1 to indicate
that patient i has all diseases selected in the clique C “ tj P V : xj “ 1u. Henceforth,
we use sG “ pV, sEq to denote the complement graph of G. We wish to maximize the
mortality rate in the fractional objective function (5a). Constraint (5b) ensures that
the subset of selected diseases forms a clique in G by preventing non-adjacent pairs of
vertices from being included simultaneously. The size of the selected clique is bounded
from above by constraint (5c). Constraint (5d) ensures that if a disease j not afflicting
patient i is included in the clique, the yi is forced to zero. Or equivalently, if yi “ 1,
then xj “ 0 for every j P V zDi. The converse is enforced by constraint (5e) as yi “ 0
forces the inclusion of at least one disease not afflicting patient i in the clique. Or
equivalently, if xj “ 0 for every j P V zDi, then yi “ 1. Together, constraints (5d)
and (5e) ensure that yi “ 1 if and only if patient i is afflicted with every disease
included in the selected clique represented by the incidence vector x. In order for the
mortality rate to be indicative and to avoid trivial solutions, constraint (5f) imposes
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a lower bound ℓ on the number of patients that have all of the diseases included in
the clique. For solving the marginal mortality rate clique problem (3), the diseases
in clique C0 can be forced to be included by adding the constraints xj “ 1 for each
j P C0.

max

ř

iP rP

yi

ř

iPP

yi
(5a)

s.t. xu ` xv ď 1 @tu, vu P sE (5b)
ÿ

jPV

xj ď b (5c)

yi ď 1 ´ xj @j P V zDi, i P P (5d)

yi ě 1 ´
ÿ

jPV zDi

xj @i P P (5e)

ÿ

iPP

yi ě ℓ (5f)

xj P t0, 1u @j P V (5g)

yi P t0, 1u @i P P (5h)

Formulation (6) that follows is an MILP that is equivalent to the fractional pro-
gram (5) obtained by linearizing the fractional objective function. Objective func-
tion (5a) is substituted using a new variable as z “

ř

iP rP

yi{
ř

iPP

yi, and we introduce

new continuous variables wi P r0, 1s for each i P P to linearize the product zyi. If
yi “ 0, constraint (6b) forces wi “ 0, while constraints (6c) and (6d) are redundant.
If yi “ 1, constraints (6c) and (6d) force wi “ z, with constraint (6b) being redun-
dant. Effectively, constraints (6b)–(6d) force each wi to equal zyi, and consequently,
equation (6e) models the objective function z as desired.

In addition to linearization, we make two further changes to formulation (5)
based on preliminary computational experiments as explained next. Formulation (6)
reduces the number of conflict constraints (5b) by using binary variables that indicate
the component that contains the clique. We let C denote the collection of connected
components of G and associate a binary variable fH with each connected component
H P C. For each component H P C, we denote its vertex set by V pHq, the edge set by
EpHq, and the complement graph by sH. Conflict constraints (6f) are written only for
non-adjacent pairs of vertices inside the connected component, while constraints (6g)
and (6h) force the x variables corresponding to all but one connected component to
zero. The other change we make is to replace constraints (5d) with its aggregated
counterpart (6j), which led to a noticeable reduction in overall running times in our
preliminary experiments, possibly due to the reduced size of the basis when solving
the node linear programming (LP) relaxations.

In our preliminary experiments, solving formulation (6) directly using the solver
was not viable for instances with a large number of patients. Consequently, we in-
troduce a decomposition branch-and-cut (DBC) approach with delayed generation of
constraints (6b)–(6d), which grow with the number of patients in the dataset. We
also experimented with the delayed generation of constraints (6j)–(6k) in combination
with delayed generation of constraints (6b)–(6d), and by themselves, as this group
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of constraints also grows with |P |. However, delayed generation of constraints (6b)–
(6d) produced the best overall performance for the DBC approach in our preliminary
experiments.

max z (6a)

s.t. wi ď yi @i P P (6b)

wi ě z ` yi ´ 1 @i P P (6c)

wi ď z @i P P (6d)
ÿ

iP rP

yi “
ÿ

iPP

wi (6e)

xu ` xv ď 1 @tu, vu P Ep sHq, H P C (6f)
ÿ

HPC
fH “ 1 (6g)

xj ď fH @j P V pHq, H P C (6h)
ÿ

jPV

xj ď b (6i)

|V zDi|yi ď |V zDi| ´
ÿ

jPV zDi

xj @i P P (6j)

yi ě 1 ´
ÿ

jPV zDi

xj @i P P (6k)

ÿ

iPP

yi ě ℓ (6l)

z P r0, 1s (6m)

wi P r0, 1s @i P P (6n)

xj P t0, 1u @j P V (6o)

yi P t0, 1u @i P P (6p)

fH P t0, 1u @H P C (6q)

4.2. An enumerative approach based on the Bron–Kerbosch algorithm

The original Bron–Kerbosch (BK) algorithm is a recursive algorithm that operates
with three sets: a current clique C, set L containing every candidate vertex that may
be added to enlarge clique C, and set S containing vertices that are adjacent to all
vertices in C but excluded as candidates for addition, in order to avoid outputting the
same maximal clique multiple times during the recursive calls. The algorithm selects
a vertex from L and moves it to C. After updating L and S by removing the non-
neighbors of the recently added vertex v, the recursive function is called with the
new C,L, and S. When L and S are empty, the current clique is returned as it is a
maximal clique that has not been previously output. Then, the algorithm backtracks
to the most recent recursive call and the candidate vertex that was added is removed
from the set of candidates L and added to S to help track for duplicates.

Several algorithmic variants for enumerating cliques in a graph have been in-
troduced since the classical algorithm by Bron and Kerbosch (1973); see for in-
stance (Cazals & Karande, 2008; Chiba & Nishizeki, 1985; Eppstein, Löffler, & Strash,
2013; San Segundo, Artieda, & Strash, 2018; Tomita, Tanaka, & Takahashi, 2006). Re-
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call our discussion in Section 4 on the mortality rate function, which is not monotonic.
Therefore, we cannot restrict our search only to cliques that are maximal with respect
to the inclusion of vertices. Consequently, many of the enhancements to the classical
algorithm (e.g., pivoting) are not applicable for our problem. The core of our algorithm
is a recursion that is similar to the original algorithm in terms of enumerating cliques.
However, as the mortality rate function is not monotonic, we must consider all cliques,
not just maximal cliques.

Algorithm 1: Enumerating Highest (Marginal) Mortality Rate Cliques

Input: xP, rP ,A,G “ pV,Eq, ℓ, by and initial clique C0 (possibly empty) such
that |C0| ă b

Output: Max-heap Q of feasible cliques with mortality rate as priority
1 Q Ð H

2 if C0 ‰ H then
3 Insert C0 in Q with priority µpC0q

4 C Ð C0, L Ð
Ş

uPC0

Npuq, and den Ð
Ş

uPC0

Au

5 else
6 C Ð H, L Ð V , and den Ð P

7 Bron-Kerbosch(C,L, den)
8 return Q
9 Function Bron-Kerbosch(C,L, den)

10 if |C| “ b or L “ H then
11 return

12 for v P L do
13 newden Ð den X Av

14 if |newden| ě ℓ then

15 µ Ð
| rPXnewden|

|newden|

16 C Ð C Y tvu

17 if C R Q then
18 Insert C in Q with priority µ

19 Bron-Kerbosch(C,L X Npvq, newden)

20 L Ð Lztvu

21 return

We introduce Algorithm 1 to solve both problems (2) and (3), which includes
pruning steps based on the following feasibility conditions: (i) restricting the enumer-
ation to cliques of size at most b, and (ii) eliminating cliques associated with insufficient

patients by enforcing that

ˇ

ˇ

ˇ

ˇ

Ş

uPC

Au

ˇ

ˇ

ˇ

ˇ

ě ℓ. In Algorithm 1, we useNpvq :“ tu : tu, vu P Eu

to denote the neighbors of vertex v in G.
A global max-heap Q, prioritized by mortality rate, is used to store the enumer-

ated cliques and if non-empty, C0 is inserted in Q initially. The disjoint sets C and
L along with the set den, which represents the set

Ş

uPC

Au from the denominator of

the mortality rate function are initialized next. Due to the recursive nature of the
algorithm, it is more efficient to track and incrementally update den, rather than re-
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compute the intersection of several sets every time. The current clique C is initialized
to C0, the candidate set L is initialized to the common neighbors of all the vertices in
C0 (or the entire vertex set if C0 is empty), and den is initialized to the set of patients
that have all diseases in C0 (or the entire patient set if C0 is empty).

Our algorithm terminates the recursion if one of the following conditions is met
in Step 10 of Algorithm 1: (i) when L is empty, which means that the current clique
is maximal; or (ii) the size of current clique is b. As a clique is enlarged with the
addition of a vertex v in a recursive call, the set den is updated, lower bound condition
checked and if met, mortality rate is calculated. The new clique is inserted in Q with
its mortality rate as priority if it is not already in the max-heap. Then a deeper
recursive call is made with the updated sets. If candidate vertex v P L cannot be
included due to the lower-bound ℓ not being satisfied, or if we added vertex v and
completed that recursive call, vertex v is removed from the set L. After the recursive
calls are exhausted, the max-heap Q contains all feasible cliques encountered, with
their associated mortality rate as heap priority. We can now extract the clique with the
highest (marginal) mortality rate and solve problems (2) and (3). More importantly,
we can now return for any positive integer K, the cliques with the K highest mortality
rates.

5. Preparing the dataset

Our computational study in Section 6 is based on a real, large-scale, de-identified
EHR database from which we developed the instances in our test bed. An EHR is an
electronic version of the medical history of patients that is maintained by a provider
over time and includes all the key administrative clinical data relevant to a person’s
care such as demographics, diagnoses, procedures, progress notes, medications, vital
signs, past medical history, immunizations, and laboratory data.

We evaluate our methodologies on a test bed derived from the Cerner Health
Facts® EHR warehouse containing health records of 69 million unique patients that
were contributed voluntarily across 200 hospitals in the United States (1999–2018)
operating with Cerner systems (now acquired by Oracle Corp.). The EHR warehouse
has been completely de-identified in compliance with Health Insurance Portability and
Accountability Act (HIPAA) regulations.

5.1. Processing the EHR database

Our EHR dataset captures longitudinal data that tracks patient encounters over time,
providing a continuous record of patient progress. For our purpose, the mortality
status is captured using discharge information, and included both in-hospital mortality
(expiration within the hospital) and hospice enrollment. Recall that the main inputs to
our optimization problems are the set of patients (and the subset of deceased patients),
disease–patience incidence sets, the comorbidity graph, and the user-specified bounds.
Figure 1 describes the process we followed to create our dataset from the EHR database
and includes associated details on the number of patients and encounters in the dataset.

In broad terms, we can describe our approach and our rationale behind the steps
in Figure 1 as follows. First, we filter the database by the age group of the patients,
restricting our attention to a five-year retrospective time window. Life expectancy
at birth for the U.S. population in the time period corresponding to the EHRs is
estimated between 76.7 and 78.7 years of age (Arias & Xu, 2022). To avoid skewing
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Remove encounters of patients after age 70;

remove patients who died at age 71

Input

EHR
database

62,025,449 patients

400,622,097 encounters

Remove encounters older than five years
from the most recent encounter of each patient;

remove patients with missing or incomplete time-stamps

61,937,618 patients

341,813,568 encounters

Remove patients with no recorded diagnoses
34,801,690 patients

170,138,769 encounters

Remove patients if their last discharge status is unknown

and no encounters observed after age 70

28,900,864 patients

140,876,003 encounters

Remove every patient aged under 18 by their most recent encounter
21,208,412 patients

114,070,328 encounters

Construct the comorbid-
ity graph G “ pV,Eq

10,604,206 patients
118,784 deceased

Instantiate other
inputs: P, P̃ , A,D

10,604,206 patients
118,476 deceased

Solve maximum mortality rate clique problem

Figure 1. The process followed in deriving our case study dataset from the Cerner Health Facts EHR
database. Beside each box we report the number of patients and encounters remaining in the dataset after

executing the steps inside each box.

the mortality rate due to natural mortality in older patients, as our first step, we
restrict our analysis to encounters of patients up to 70 years of age at the time of
the encounter. Moreover, we follow the patient records for one more year and exclude
those patients (along with all their encounters) who died at age 71 to remove the bias
introduced by including the patients in the dataset who died immediately after the
cut-off age of 70 years. We only include patients at least 18 years of age by their most
recent encounter in our study, as the treatment paths for pediatrics are different. It
is not uncommon to use age limits and time windows in comorbidity analysis. For
instance, in their study, Hidalgo et al. (2009) consider patients aged 65 or older at the
time of their first recorded encounter in their dataset and study patient mortality in
eight years since the first diagnosis in their dataset. For each patient, we only include
encounters from the most recent five years, in order to focus on the recent medical
history of each patient.

Our next major step addressed missing data elements, specifically, removing pa-
tients with no recorded diagnoses, missing or incomplete time-stamps of encounters,
and those with last discharge status unknown. However, there is no evidence to sus-
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pect that this could introduce systematic bias, especially considering the massive size
of the final dataset. Encounters may lack diagnosis codes due to coding errors, privacy
considerations, and involvement limited to ancillary services without clinical evalua-
tion, among other factors. Similarly, time-stamps could be missing due to data entry
errors. The discharge status of each EHR encounter records whether the patient died.
If the most recent discharge status of a particular patient is not known, it is difficult
to discern the actual status of the patient. Notably, there were patients with unknown
last discharge status in the dataset with encounters up to 70 years of age but visited
at least once after 70 years of age. Therefore, we only removed a patient in our age
group from the records if the last discharge status is unknown and no information
about them was available after age 70.

After completing the foregoing steps the dataset contained approximately 21.2
million patients records, which was then divided into two random samples of equal size
(i.e., approximately 10.6 million patients each). The first partition was used to create
the comorbidity graph and the second partition was used to create the remaining
inputs to our optimization problems. The second partition contains 118,476 patients
that died or were assigned a status of hospice, corresponding to an overall mortality
rate of 1.12%.

5.2. Constructing the comorbidity graph

The diagnoses in our EHR dataset are recorded according to the International Classi-
fication of Diseases 9th and 10th revision Clinical Modification (ICD-9-CM and ICD-
10-CM) (Centers for Disease Control and Prevention, 2013, 2022). For our study we
only need the disease categories, IDs of patients, and their mortality status. Given the
presence of both ICD-9 and ICD-10 codes in our EHR data, the same disease may be
represented by two different coding systems, introducing duplicates into our analysis.
Furthermore, the extensive granularity of ICD codes can exacerbate this duplication.
Specifically, ICD systems allocate distinct codes for diseases that, from a practical
standpoint, are considered the same or very similar but may exhibit slight differences,
such as variations in body locations (e.g., Osteoarthritis of the knee: M17.9 compared
to that of the hip: M16.9), different contexts (e.g., fall from an escalator: W10.0 ver-
sus from a sidewalk curb: W10.1), and various causes (e.g., anthrax septicemia: 022.3
versus salmonella septicemia: 003.1). Therefore, we employed the Clinical Classifi-
cations Software (CCS) developed by Agency for Healthcare Research and Quality
(AHRQ) (2021) to aggregate ICD-9/10 codes, grouping them into relatively high-level
disease states for analysis. CCS, originally developed for classifying ICD-9 codes, has
since been expanded into CCS Refined (CCSR) for ICD-10. This system has been
widely applied in health data analytical research to group ICD codes into medically
meaningful categories, thereby simplifying the classification space and enhancing the
interpretability of analytical results (Kansal et al., 2021; Lee, Levin, Finley, & Heilig,
2019; Malecki et al., 2024).

Each high-level disease associated with the 10.6 million patients is represented
as a vertex in the comorbidity graph. To quantify disease co-occurrence in our EHR
data selected for constructing the comorbidity graph we use the Salton’s cosine index
(SCI), a cosine similarity measure also known as the Ochiai coefficient (Kalgotra et
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al., 2017; Kalgotra, Sharda, & Luse, 2020; Salton & McGill, 1983).

SCIuv “
|Au X Av|

a

|Au| ˆ
a

|Av|
(7)

We say the co-occurrence of diseases u and v is significant if SCIuv exceeds the user-
specified threshold ∆ P r0, 1s and add the edge tu, vu to the comorbidity graph. We
use the cosine index to measure similarity (co-occurrence), rather than correlation
coefficients that depend explicitly on the sample size (i.e., the number of patients).
As the SCI depends only on the prevalence of the diseases in the patient population
considered, it is typically more stable and not affected broadly by an increase in the
sample size, unless the prevalence of diseases changes significantly.

The comorbidity graph representation we have used is not based on physiological
interaction between diseases, which could be more complex and indirect. An edge
representing comorbidity instead implies that the two diseases involved co-occur at
a relatively high frequency among the patients in the data set. Even if two diseases
have indirect interaction physiologically, manifest at different points in time in the
progression of a patient, and vary from one patient to another in the data set, they
will still correspond to an edge in the comorbidity graph if a sufficiently large number
of patients are afflicted with both diseases over the long time window.

In order to choose an appropriate value for the SCI threshold ∆ we use a method-
ology developed in a recent study (Kalgotra et al., 2020). As we cannot directly com-
pute the statistical significance of the cosine index, Kalgotra et al. (2020) use the
ϕ-correlation coefficient as a proxy for determining statistical significance. This ap-
proach enables us to identify the number of edges with a significance level (α) of 0.01.
Given the large sample size, we conservatively used a smaller α to ensure robustness.
Our analysis identified 11,086 statistically significant edges. Notably, at an SCI thresh-
old of ∆ “ 0.0484 the number of significant edges remains the same. Therefore, we
choose ∆ “ 0.05 as our cutoff for including edges in the network. The resulting graph
has 285 vertices and 11,086 edges, all contained within one large connected component
with 277 vertices.

6. Computational study

The overall goal of our computational study is to assess the performance of the pro-
posed methods and their effectiveness in practice. The experiments we conducted to
this end and the results are discussed in this section. All computational experiments
reported in this article were conducted on 64-bit Linux® compute nodes with dual
Intel® “Skylake” 6130 CPUs with 96 GB RAM. The MILP formulation and the mod-
ified BK algorithm were implemented using the Python programming language. Data
preparation steps were also implemented in Python. Our source codes are available
online (Vaghfi Mohebbi et al., 2024).

First, we compare the performance of the two approaches we have introduced to
solve the main optimization problem of interest. In Section 6.1, we report our results
from solving MILP formulation (6) using Gurobi Optimization Solver v10.0.3 (Gurobi
Optimization, LLC, 2023) on a test bed of relatively smaller instances derived from
EHRs. We compare these results against solving the same instances using Algorithm 1,
assuming that C0 “ H. In Section 6.2, we focus on the performance of the modified BK
algorithm on datasets containing more than 10 million patients, analyze its running
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times, and discuss the solutions found. We report our sensitivity analysis experiments
with respect to b and solving the marginal mortality rate problem using Algorithm 1
in Section 6.3.

Recall that the denominator of the mortality rate expression must be at least
size ℓ, and we use a comparatively relaxed requirement of ℓ “ 10 in the experiments
in Section 6.1 and increase it to ℓ “ 100, a stricter requirement for the remaining
experiments. Our choices of ℓ have been guided more by our purpose, which is to
assess the algorithm performance—smaller values of ℓ imply more feasible cliques and
a larger search space. In practice, it is more appropriate to choose ℓ as a sufficiently
large fraction of |P | to bestow desired statistical significance on the mortality rate
calculation.

Our focus is to discover small (b ď 4) disease clusters that exhibit high mortality
rates. Based on our conversations with medical practitioners, we understand that these
are the cases where it is most valuable, from a decision-support perspective, to find
comorbid diseases that increase the mortality rate significantly. In our experiments, we
consider the clique size upper-bound b P t1, 2, 3, 4u. We note that the largest clique in
our comorbidity graph contains 92 diseases, but unsurprisingly there are zero patients
that have all 92 diseases. Based on our preliminary experiments, we can detect cliques
with as many as 10 vertices in the 10.6 million patient dataset that simultaneously
affect at least 100 patients with mortality rate under 0.46.

6.1. Comparisons against the DBC approach

From the 10.6 million patient dataset, for each instance size as represented by the
number of patients (1,000, 5,000, 50,000, and 100,000) we selected five random sam-
ples that we considered in our experiments comparing the performance of solving the
MILP formulation using decomposition and delayed constraint generation against the
modified BK algorithm. The delayed addition of constraints (6b)–(6d) described in
Section 4.1 was implemented in Gurobi using the “lazy cut” functionality. We set a
3-hour time limit for each instance solved using the DBC algorithm.

At the root node of the branch-and-cut (BC) tree, we begin with a relaxation
that does not include any of the constraints (6b)–(6d). Whenever an integral solution
to the LP relaxation is encountered at a BC node, all violated constraints (6b)–(6d)
are added to the node as lazy cuts. Gurobi re-solves the LP relaxation and manages
the subsequent branching at that node.

The detailed results of solving formulation (6) using the DBC algorithm are doc-
umented in Table A1 in the appendix and summarized in Table 1. The columns labeled
“Size”, “b”, and “#Optimal” in Table 1 identify the patient size in the test instance
used, the clique size upper-bound, and the number of instances solved to optimal-
ity, respectively. The next three columns report the average and the range (minimum
and maximum) observed over the five random samples of the following quantities (in
order): the mortality rate objective function value of the best solution found, the ter-
mination MIP gap for instances not solved to optimality, and the wall-clock running
time for model building and solution for instances solved to optimality. It is apparent
from the results that despite using decomposition and delayed constraint generation,
the MILP based approach is unable to solve many of the instances with patient size
50,000 and 100,000 to optimality. By contrast, the modified BK Algorithm 1 is signifi-
cantly faster on the same test bed and solves all instances to optimality as reported in
Table A2 in the appendix and summarized in Table 2. The average wall-clock running
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Table 1. Summary of results from using the DBC algorithm to solve formulation (6). Unknown (UNK) means

that no value was reported by the solver as the termination was due to a memroy related crash. TO stands for
time-out, the solver terminated reaching the 3-hour time limit.

Size b #Optimal Avg µ [min, max] Avg gap (%) [min, max] Avg time (s) [min, max]

1,000

1 5 0.30 r0.14, 0.53s 0 - 3 r2, 3s

2 5 0.45 r0.20, 0.63s 0 - 43 r15, 135s

3 5 0.48 r0.25, 0.70s 0 - 27 r13, 72s

4 5 0.51 r0.30, 0.70s 0 - 22 r11, 45s

5,000

1 5 0.63 r0.50, 0.73s 0 - 63 r42, 84s

2 5 0.68 r0.50, 0.75s 0 - 4,285 r483, 8,895s

3 4 0.72 r0.60, 0.80s 66 r66, 66s 6,258 r3,457,TOs

4 3 0.71 r0.60, 0.83s 62 r57, 66s 3,806 r554,TOs

50,000

1 0 0.68 r0.64, 0.72s 45 r36, 56s TO TO
2 0 0.77 r0.67, 0.84s 29 r18, 47s TO TO
3 2 0.91 r0.80, 1.00s 16 r7, 25s 4,022 r2,810,TOs

4 5 1.00 r1.00, 1.00s 0 - 4,024 r1,060, 9,735s

100,000

1 0 0.46 r0.05, 0.69s 632 r44, 1,800s TO TO
2 0 0.31 r0.03, 0.43s 979 r107, 2,700s TO TO
3 2 0.67 r0.02, 1.00s 3,698 r3,698, 3,698s TO r5,032,TOs

4 2 1.00 r1.00, 1.00s UNK r0,UNKs TO r4,492,TOs

time reported here includes the time to complete all the recursive calls and the time
to report the top-100 highest mortality rate cliques.

From the foregoing experiments it is clear that due to the large number of pa-
tients in the data set and the small size of cliques we seek (from a graph with a
few hundred vertices), the enumerative approach is dominant in its performance from
a computational perspective. Furthermore, this approach also finds the top-K most
lethal cliques for our choice of K. Consequently, for our subsequent experiments and
studies, we concentrate solely on the modified BK algorithm.

6.2. Scalability of the modified Bron–Kerbosch algorithm

Our primary goal in this section is to assess the performance of the modified BK
algorithm on the full dataset consisting of 10.6 million distinct patient records, as it
represents the scale at which we may be interested in solving our problems of interest.
Table 3 presents the results for this complete dataset. Column “#Dec” reports the
number of deceased patients (the numerator of the mortality rate) for reference and
column “#RC” reports the number of recursive calls made by the algorithm. For
experiments in this section, we report the top-5 most lethal cliques.

As evident from Table 3, the modified BK algorithm is effective on this large
dataset for all practically meaningful values of parameter b. As far as the results
themselves are concerned, the mortality rate associated with cardiac arrest, either
by itself or in combination with other diseases stands out as the highest among all
cliques of size at most 4. As expected the maximum mortality rate increases as the
upper bound b on clique size increases from 1 to 4. Cardiac arrest by itself has a
mortality rate of 0.66, but when paired with coma, septicemia, shock, chronic ulcer,
and respiratory distress syndrome, it corresponds to the five highest mortality rate
cliques with µ ranging from 0.68 to 0.73. The highest mortality rates for b P t3, 4u are
higher, between 0.73 and 0.77, associated with cardiac arrest, coma, and shock.

From the results in Table 3, specifically, the diseases featured in the five highest
mortality rate cliques for each value of parameter b, confirm the current understanding
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Table 2. Summary of results from solving problem (2) using the modified Bron–Kerbosch algorithm 1.

Size b Avg µ [min, max] Avg time (s) [min, max]

1,000

1 0.30 r0.14, 0.53s 1 r1, 1s

2 0.45 r0.20, 0.63s 1 r1, 1s

3 0.49 r0.25, 0.70s 1 r1, 1s

4 0.51 r0.30, 0.70s 1 r1, 1s

5,000

1 0.63 r0.50, 0.73s 1 r1, 1s

2 0.68 r0.50, 0.75s 1 r1, 1s

3 0.72 r0.63, 0.80s 1 r1, 1s

4 0.74 r0.63, 0.83s 5 r4, 5s

50,000

1 0.67 r0.62, 0.72s 1 r1, 1s

2 0.81 r0.72, 0.84s 1 r1, 1s

3 0.98 r0.91, 1.00s 7 r6, 7s

4 1.00 r1.00, 1.00s 53 r1, 69s

100,000

1 0.66 r0.63, 0.69s 1 r1, 1s

2 0.79 r0.74, 0.83s 1 r1, 1s

3 0.97 r0.85, 1.00s 13 r12, 14s

4 1.00 r1.00, 1.00s 117 r114, 121s

Table 3. Top-5 most lethal cliques in the 10.6 million patient dataset found by the modified BK algorithm.

b Clique #Dec µ Time (s) #RC

1

Cardiac arrest 29,450 0.66

20 286
Shock 23,422 0.41
Asp. pneum. 9,677 0.26
Resp. fail. 49,599 0.25
Malig. neopl. 7,583 0.24

2

Cardiac arrest, Coma 6,765 0.73

209 11,619
Cardiac arrest, Septicemia 7,172 0.70
Cardiac arrest, Shock 7,176 0.70
Cardiac arrest, Chron. ulcer 2,925 0.68
Cardiac arrest, Resp. distr. synd. 14,446 0.68

3

Cardiac arrest, Coma, Shock 90 0.76

1,894 346,017
Cardiac arrest, Coma, Renal failure 156 0.74
Cardiac arrest, Coma, Aftercare 3,991 0.74
Cardiac arrest, Coma, Per. atheros. 993 0.74
Cardiac arrest, Shock, Septicemia 4,388 0.73

4

Cardiac arrest, Coma, Shock, Renal failure 1,994 0.77

13,221 7,721,551
Cardiac arrest, Coma, Shock, Aftercare 1,894 0.77
Cardiac arrest, Coma, Shock, Epilepsy 798 0.76
Cardiac arrest, Coma, Shock, Diab. mell. w complications 863 0.76
Cardiac arrest, Coma, Shock, Fluid disord. 2,469 0.76

in the medical community as some of the most lethal comorbidities. See for instance,
mortality incidence and analysis of these comorbidities by Bauer et al. (2020); Chao et
al. (2019); Grubb, Fox, and Elton (1995); Gupte, Knack, and Cramer (2022); Karam
et al. (2019); Kempker et al. (2020); Niederman and Cilloniz (2022); Parcha et al.
(2021); Vincent, Jones, David, Olariu, and Cadwell (2019); Yan et al. (2020); Yang et
al. (2020). Hence, our computational results help reinforce clinical insights through an
analysis of large-scale EHR data. Furthermore, the fact that the proposed approach
has not detected spurious comorbidities among the highest mortality rate cliques is
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encouraging, as the detection of spurious clusters is a common concern in any graph-
based data mining approach. The procedure followed in preparing the dataset and the
design of the modified BK algorithm seem to be offering a practically effective and
useful framework for mortality rate analysis of comorbidities.

Table 4. Top-5 most lethal cliques in the 10.2 million patient dataset found by the modified BK algorithm.

b Clique #Dec µ Time (s) #RC

1

Secondary malignancies 24,211 0.23

16 281
Cancer of liver 3,189 0.20
Cancer of pancreas 2,376 0.20
Intrauterine hypoxia 125 0.20
Cancer of lung 11,565 0.19

2

Septicemia, Secondary malignancies 7,380 0.51

268 11,203
Septicemia, Cancer of lung 3,144 0.47
Coma, Myocard. infarc. 2,695 0.47
Secondary malignancies, Pneumonia 7,866 0.46
Secondary malignancies, Renal failure 7,734 0.45

3

Cancer of lung, Septicemia, Secondary malignancies 2,249 0.58

2,011 329,843
Coag. disord., Secondary malignancies, Septicemia 2,825 0.57
Secondary malignancies, Renal failure, Septicemia 3,864 0.57
Pneumonia, Secondary malignancies, Septicemia 3,663 0.57
Nutritional deficiencies, Secondary malignancies, Septicemia 3,666 0.56

4

Septicemia, Renal failure, Cancer of lung, Second. malign. 991 0.62

11,901 7,291,810
Septicemia, Coag. disord., Gastrointestinal hemor., Second. malign. 745 0.62
Septicemia, Coag. disord., Cancer of lung, Second. malign. 796 0.62
Septicemia, Cancer of lung, Pulmonary heart dis., Second. malign. 483 0.61
Septicemia, Coag. disord., Pneumonia, Second. malign. 1,461 0.61

In order to explore the dataset further, we exclude from the 10.6 million patient
dataset, every patient that has cardiac arrest, shock, aspiration pneumonitis, respira-
tory failure, or malignant neoplasm, which may be evident to physicians as causing
lethal comorbidities. The resulting dataset corresponding to 10.2 million patients is
analyzed using the modified BK algorithm and the results are reported in Table 4.

From the results in Table 4, the individual mortality rate linked to secondary
malignancies is the highest among all the (remaining) diseases, although it is much
lower at 0.23. Notably, when paired with septicemia it corresponds to the highest mor-
tality rate of 0.51, more than doubling mortality rate of secondary malignancies and
more than the sum of the individual mortality rates. These two diseases continue to
remain among the top-two highest mortality rate cliques when we increase b to three
and then to four, with the respective rates increasing to 0.58 and then to 0.62. This
perspective into lethal comorbidities derived from the EHR dataset after excluding
the diseases that dominate the most lethal cliques illustrates how the proposed frame-
work may be used to better understand lesser known comorbidities. This is especially
important given how the maximum mortality rate rapidly escalates in the presence of
comorbidities, even though it may not occur intuitively to practitioners.

The findings presented in Tables 3 and 4 demonstrate that the modified BK
algorithm tackled these large-scale datasets within a reasonably short span of less
than three hours in computation time. These results offer compelling evidence that
our proposed methodology seamlessly integrates with real-world datasets, underscoring
its robustness and effectiveness in practical healthcare analytics settings.
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6.3. Sensitivity analysis and marginal mortality rates

Our experiments in Sections 6.1 and 6.2 focused on solving problem (2), while the ex-
periments in this section focus on problem (3) when C0 is not empty. For experiments
in this section, we consider the 10.2 million patient dataset described in the previous
section that excludes every patient with any of the following diseases: cardiac arrest,
shock, aspiration pneumonitis, respiratory failure, and malignant neoplasm. From Ta-
ble 4, for each value of b, we fix the fifth highest mortality rate clique as C0. We choose
C0 in this manner as the results in Tables 3 and 4 already demonstrate a sequence of
containment relationships among the cliques as b is increased. With this choice of C0,
we aim to identify high marginal mortality rate cliques not readily apparent from the
results in Table 4.

We first report on our experiments on the impact of adding a new disease u P

V zC0 on the mortality rate. In this experiment, we do not require that C0 Y tuu

forms a clique. Then, we evaluate the modified BK algorithm when it is tasked to
find maximum marginal mortality rate cliques. Specifically, we conduct the following
experiments with each C0 chosen as described above: (i) For each u P V zC0, compute
the mortality rate of C0 Y tuu and return the top-3 highest marginal mortality rate
subsets containing C0. (ii) Find the top-3 highest marginal mortality rate cliques with
respect to to C0 using Algorithm 1 when allowing the addition of one and two more
diseases.

Table 5. Top-3 most lethal subsets formed by the addition of a single disease.

Initial clique C0 µpC0q Additional disease u µpC0 Y tuuq %Increase Cluster type

Cancer of lung
0.19 Coma 0.51 168% 1-defective clique
0.19 Septicemia 0.47 147% clique
0.19 Chronic ulcer of skin 0.40 110% 1-defective clique

Secondary malignancies
Renal failure

0.45 Coma 0.63 40% 1-defective clique
0.45 Septicemia 0.57 26% clique
0.45 Cancer of esophagus 0.55 22% 2-defective clique

Septicemia
Secondary malignancies
Nutritional deficiencies

0.56 Cancer of esophagus 0.66 17% 2-defective clique
0.56 Coma 0.65 16% 1-defective clique
0.56 Cancer of lung 0.60 7% clique

Septicemia
Secondary malignancies
Pneumonia
Coag. disorder.

0.61 Coma 0.67 9% 1-defective clique
0.61 Cancer of pancreas 0.65 6% 3-defective clique
0.61 Chronic ulcer of skin 0.65 6% 1-defective clique

Table 5 reports the results from our one-sided sensitivity analysis with respect
to the clique size upper-bound being increased by one. For each C0 considered in the
first column, we report the additional disease u that corresponds to the highest, second
highest and the third highest increase in mortality rate in the third column. Column
labeled “%Increase” reports the percentage by which µpC0 Y tuuq has increased over
µpC0q. In this test instance, we observe that when C0 is smaller, µpC0q is typically
smaller and significant increases are possible (and observed) by the addition of a
single disease. For example, adding coma to the initial clique containing just one
disease, cancer of lung, increases mortality rate by 168%. Conversely, when C0 is larger,
µpC0q is already quite high and the observed increases from the addition of another
disease are not as significant. For example, when |C0| “ 4, the largest increase in
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mortality rate is less than 10%. These observations also reiterate our emphasis on small
but lethal cliques in this article and substantiate our parameter choice in conducting
computational experiments with b ď 4.

Another key observation concerns the types of subsets we detect corresponding
to the three highest marginal mortality rates, as indicated under the column labeled
“Cluster type”. We characterize them using a graph-theoretic clique relaxation known
as a k-defective clique, which is a subset of vertices that induces a subgraph that
falls short of containing all possible edges by at most k edges. Formally, S Ă V is a
k-defective clique if the induced subgraph GrSs contains at least

`

|S|

2

˘

´k edges. A clas-
sical clique is therefore 0-defective. We characterize the subsets we find in terms of de-
fective cliques as they are, in our opinion, a more intuitive choice in this context. Other
authors, for example, may choose to characterize these using other clique relaxations
like k-plexes (Balasundaram, Butenko, & Hicks, 2011) or γ-quasi-cliques (Pattillo,
Veremyev, Butenko, & Boginski, 2013) with an appropriate choice of the parameters
k and γ.

Our analysis reveals that 9 out of the 12 subsets are 0-defective or 1-defective
cliques, although when a 2-vertex subset is 1-defective, it is simply two isolated vertices,
which is arguably not a very interesting cluster. However, 9 out of the 12 subsets
induce connected subgraphs and we visualize three such examples in Figure 2. It is
worth reiterating that an edge in the comorbidity graph is constructed based on co-
occurrence between the endpoints in the EHR dataset under consideration. Hence, for
two diseases u, v P V , it is possible that SCIuv ă ∆ while |Au X Av| ě ℓ, permitting
a subset of vertices to contain non-adjacent diseases although it corresponds to a
mortality rate strictly larger than zero. We remark that the choice of ℓ “ 100 in
our experiments is arbitrary, and larger values of lower-bound ℓ may yield different
clusters.

u u u

Figure 2. From left to right, we visualize the subgraphs induced by the following subsets identified in Table 5:

1-defective clique {Septicemia, Secondary malignancies, Pneumonia, Coag disorder, Coma (u)}; 2-defective
clique {Septicemia, Secondary malignancies, Nutritional deficiencies, Cancer of esophagus (u)}; 3-defective

clique {Septicemia, Secondary malignancies, Pneumonia, Coag disorder, Cancer of pancreas (u)}. The added

vertex u is labeled in the graphs.

Our final experiments assess the performance of Algorithm 1 given a non-empty
C0. The modified BK algorithm is effective on the large-scale dataset we have con-
sidered, and it is extremely fast when an initial clique of diseases C0 is provided. We
can also see from the results in Tables 6 and 7 that this experiment offers information
complementary to that reported in Tables 4, and we observe trends similar to Table 5.
Through this experiment we can recognize the disease(s) to be most wary of when
a patient is already diagnosed with an existing clique of diseases, which is the main
purpose behind investigating marginal mortality rates.
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Table 6. Top-3 most lethal cliques formed by the addition of a single disease.

C0 µpC0q Additional disease u µpC0 Y tuuq %Increase Time (s) #RC

Cancer of lung
0.19 Septicemia 0.47 147%

2 480.19 Renal failure 0.40 110%
0.19 Pneumonia 0.38 100%

Secondary malignancies
Renal failure

0.45 Septicemia 0.57 26%
2 750.45 Pneumonia 0.54 20%

0.45 Cancer of liver 0.53 17%

Septicemia
Secondary malignancies
Nutritional deficiencies

0.56 Cancer of lung 0.60 11%
2 700.56 Coag. disord. 0.60 11%

0.56 Pneumonia 0.60 11%

Septicemia
Secondary malignancies
Pneumonia
Coag. disorder.

0.61 Gastrointestinal hemor. 0.64 4%
2 690.61 Intest. obstruc. w hernia 0.64 4%

0.61 Renal failure 0.63 3%

Table 7. Top-3 most lethal cliques formed by the addition of two diseases.

C0 µpC0q Additional diseases u, v µpC0 Y tu, vuq %Increase Time (s) #RC

Cancer of lung
0.19 Secondary malignancies, Septicemia 0.57 200%

3 9590.19 Coag. disord., Septicemia 0.55 189%
0.19 Nutritional deficiencies, Septicemia 0.53 178%

Secondary malignancies
Renal failure

0.45 Cancer of lung, Septicemia 0.62 37%
3 24540.45 Coag. disord., Septicemia 0.61 35%

0.45 Pneumonia, Septicemia 0.60 33%

Septicemia
Secondary malignancies
Nutritional deficiencies

0.56 Gastrointestinal hemorr., Coag. disord. 0.64 14%
3 23180.56 Renal failure, Cancer of lung 0.63 12%

0.56 Liver disease, Renal failure 0.63 12%

Septicemia
Secondary malignancies
Pneumonia
Coag. disorder.

0.61 Gastrointestinal hemor., Bone disease 0.69 13%
2 22200.61 Gastrointestinal hemor., Phlebitis 0.68 11%

0.61 Intest. obstruc. w hernia, E Code: medical drugs 0.67 9%

7. Conclusion

This article introduces a framework for an integrated analysis of an EHR dataset
in conjunction with a comorbidity graph to detect lethal cliques, i.e., co-occurring
disease clusters with high mortality rates. Our computational study demonstrates
the effectiveness of the proposed methodology on large-scale EHR datasets using the
enumerative algorithm we introduce to discover the most lethal cliques containing up
to four vertices in the comorbidity graph. Our results, specifically the most lethal
comorbidities identified, are consistent with those observed in the medical literature.

Identifying such disease clusters with high (marginal) mortality rates can em-
power healthcare providers to implement early interventions and allocate special at-
tention to patients afflicted by these diseases, thereby enhancing healthcare outcomes.
When physicians are aware of a patient’s preexisting comorbidities, it becomes valu-
able to determine which additional diseases may further increase mortality rates. This
insight can enable patients and healthcare practitioners to take proactive measures to
mitigate the risk.

By filtering the EHR dataset appropriately, we can study, for example, specific
age groups or demographics to better understand their exposure to lethal comorbidi-
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ties. Furthermore, as we demonstrate in Table 4, our framework enables us to study
lesser known comorbidities by excluding from the input data, diseases that dominate
the highest mortality rate clusters, and consequently are already well understood.
Combined with the domain expertise of clinicians’ specialties, the access to massive
datasets being generated through electronic health records presents an opportunity
for healthcare analytics researchers to work with clinicians and medical researchers
to validate lethal comorbidities observed in practice, and perhaps discover previously
unknown comorbidities and insights into higher mortality rates of specific patient sub-
groups.

Limitations of the proposed methodology and results. Our dataset is limited
to patients from hospitals using the Cerner EHR system, which may introduce biases
related to the healthcare delivery practices and patient populations of these institu-
tions. Additionally, data may be incomplete if patients did not adhere to follow-up
appointments, sought care at facilities utilizing different EHR systems, or received
treatment outside of the Cerner network. Furthermore, during data preprocessing, we
excluded patients with missing information required for a mortality rate analysis, such
as diagnosis codes, time-stamps of encounters, and discharge status. This might af-
fect the representativeness of our sample, although the large size of the final dataset
mitigates this risk to a large extent. Although our dataset contains a significantly
large number of patients with their most recent five-year medical history and our find-
ings have been consistent with existing medical literature, external validation using
diverse datasets across different EHR systems and healthcare settings would support
the generalizability of our methodology and enhance the robustness of our results.

Future extensions. It may be worth extending our methodology to alternative clus-
ter models that are better suited if the EHR database used to construct the comor-
bidity graph is incomplete, possibly because of short time windows or if an excessive
number of encounters are suspected to be missing. Clique relaxations like k-plexes,
robust 2-clubs, quasi-cliques, and defective cliques allow non-adjacent pairs of vertices
inside a cluster and are less sensitive to missing edges; for an introduction to such
models, see (Balasundaram et al., 2011; Y. Lu, Salemi, Balasundaram, & Buchanan,
2022; Miao & Balasundaram, 2020; Pattillo, Youssef, & Butenko, 2013; Trukhanov,
Balasubramaniam, Balasundaram, & Butenko, 2013). The scope of this work can be
further expanded by an explicit accounting of the temporal nature of the patient en-
counters using temporal comorbidity graphs introduced by Y. Lu et al. (2021).
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Appendix A. Detailed computational results

Table A1 presents the results from solving formulation (6) using the DBC algorithm.
The columns labeled “Size”, “No.”, and “b” identify the patient size in the instance, the
sample number, and clique size upper-bound, respectively. Under the column labeled
“Clique” we report the diseases corresponding to the best solution found and under
column “µ” we report the corresponding mortality rate. The column labeled “Gap
(%)” lists the MILP termination gap reported by the solver, and it is zero whenever
the solver finds an optimal solution. Under the column labeled “Time (s)” we report the
wall-clock running time in seconds, rounded down to the nearest integer, for building
the MILP relaxation used at the root node and solving it using the DBC algorithm.
The entry “TO” denotes that the solver timed out, exceeding the 3-hour time limit.

The detailed results from using the modified BK Algorithm 1 to solve problem (2)
is presented in Table A2, with the columns labeled as before. The wall-clock running
time reported here includes the time to complete all the recursive calls and the time
to report the top-100 highest mortality rate cliques. Although top-100 highest mor-
tality rate cliques were found, for comparison purposes, we only report the maximum
mortality rate clique found in Table A2.
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Table A1. Detailed results of using the DBC algorithm to solve formulation (6).

Size No. b Clique µ Gap (%) Time (s)

1K

1

1 Coma 0.14 - 2
2 Skin tissue infect., Defic. and other anemia 0.20 - 33
3 Urinary tract infect., Unclass., Disord. lipid metabol 0.25 - 13
4 Urinary tract infect., Unclass., Disord. lipid metabol, Defic. and other anemia 0.30 - 11

2

1 Renal fail. 0.20 - 3
2 Lower resp. dis., Renal fail. 0.40 - 15
3 Lower resp. dis., Renal fail. 0.40 - 15
4 Lower resp. dis., Renal fail. 0.40 - 16

3

1 Resp. fail. 0.32 - 3
2 Lower resp. dis., Dis. of white blood cells 0.50 - 15
3 Resp. fail., Nerv. sys. disord., Disord. lipid metabol 0.70 - 16
4 Resp. fail., Nerv. sys. disord., Disord. lipid metabol 0.70 - 19

4

1 Resp. fail. 0.53 - 3
2 Resp. fail., Fluid disord. 0.63 - 135
3 Resp. fail., Fluid disord. 0.63 - 72
4 Resp. fail., Fluid disord. 0.63 - 45

5

1 Resp. fail. 0.31 - 3
2 Chronic obs. pulmonary dis., Renal fail. 0.50 - 19
3 Liver diseas., Gastrointestinal disord., Renal fail. 0.50 - 18
4 Liver diseas., Fever unknown origin 0.50 - 17

5K

1

1 Cardiac arrest 0.60 - 84
2 Resp. fail., Cardiac arrest 0.75 - 8895
3 Shock, Resp. fail., Chronic kidney dis. 0.80 - 5932
4 Septicemia, Resp. fail., Liver diseas., Renal fail. 0.83 - 6725

2

1 Cardiac arrest 0.70 - 42
2 Coronary atherosclerosis, Cardiac arrest 0.72 - 2931
3 Coronary atherosclerosis, Cardiac arrest 0.72 - 5277
4 Resp. fail., Lower resp. dis., Nutri. defic., Defic. and other anemia 0.60 66 TO

3

1 Cardiac arrest 0.50 - 69
2 Resp. fail., Upper resp. infect. 0.50 - 3584
3 Pneumonia, Circulatory dis., Dis. of white blood cells 0.60 66 TO
4 Secondary malign., Lower. Resp. dis., Aftercare 0.63 57 TO

4

1 Cardiac arrest 0.73 - 63
2 Cardiac arrest 0.73 - 5533
3 Cardiac arrest 0.73 - 3457
4 Cardiac arrest 0.73 - 4141

5

1 Cardiac arrest 0.62 - 58
2 Shock, Mental health 0.70 - 483
3 Urinary tract infect., Septicemia, Resp. fail. 0.76 - 10368
4 Urinary tract infect., Resp. fail., Pneumonia, Abdominal pain 0.80 - 554

50K

1

1 - - - TO
2 Shock, Coma 0.67 47 TO
3 Septicemia, Mainten. chemotherapy, Genitourinary symptoms 0.80 25 TO
4 Shock, Metabolic disord., Coma, Cardiac arrest 1.00 - 3792

2

1 Cardiac arrest 0.72 36 TO
2 Dis. of white blood cells, Cardiac arrest 0.84 18 TO
3 Septicemia, Dis. of white blood cells, Cardiac arrest 1.00 - 5235
4 Resp. fail., Coma, Chronic obs. pulmonary dis., Cardiac arrest 1.00 - 9735

3

1 Cardiac arrest 0.64 56 TO
2 Coma, Cardiac arrest 0.81 22 TO
3 Shock, Coag. disord., Cardiac arrest 0.93 7 TO
4 Diab. mell. with complications, Coma, Cardiac arrest, Renal fail. 1.00 - 1060

4

1 Cardiac arrest 0.70 42 TO
2 Epilepsy, Cardiac arrest 0.83 20 TO
3 Nutri. defic., Renal fail., Cardiac arrest 1.00 - 2810
4 Essential hypertension, Epilepsy, Cardiac arrest, Renal fail. 1.00 - 2185

5

1 - - - TO
2 Chronic obs. pulmonary dis., Cardiac arrest 0.72 37 TO
3 Septicemia, Mainten. chemotherapy, E Codes. effects of medical drugs 0.86 15 TO
4 Secondary malign., Pneumonia, Septicemia, Cardiac arrest 1.00 - 3349

100K

1

1 Cardiac arrest 0.69 44 TO
2 Disord. in infancy 0.03 2700 TO
3 Nutri. defic., Cardiac arrest, Myocardial infarc. 1.00 - 5,032
4 - - - TO

2

1 Coag. disord. 0.05 1800 TO
2 - - - TO -
3 Phlebitis, Chronic ulcer skin, Cardiac arrest 1.00 - 7,954
4 Shock, Endocrine disord., Congest. heart fail., Biliary tract dis. 1.00 - 4,492

3

1 Cardiac arrest 0.65 52 TO
2 Shock, Biliary tract dis. 0.43 130 TO
3 Unclass. 0.02 3698 TO
4 Nutri. defic., Disord. lipid metabol, Dis. of white blood cells, Cardiac arrest 1.00 - 5,517

4

1 - - - TO
2 - - - TO
3 - - - TO
4 - - - TO

5

1 - - - TO
2 Malign. neopl. without site, E Codes. medical care 0.48 107 TO
3 - - - TO
4 - - - TO
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Table A2. Detailed results of using the modified Bron–Kerbosch Algorithm 1 to solve problem (2).

Sample No. b Clique µ Time (s)

1K

1

1 Coma 0.14 ă1
2 Skin tissue infect., Defic. and other anemia 0.20 ă1
3 Urinary tract infect., Unclass., Disord. lipid metabol 0.25 ă1
4 Urinary tract infect., Unclass., Disord. lipid metabol, Defic. and other anemia 0.30 ă1

2

1 Renal fail. 0.20 ă1
2 Lower. Resp. dis., Renal fail. 0.40 ă1
3 Urinary tract infect., Metabolic disord., Cardiac dysrhythmias 0.40 ă1
4 Lower. Resp. dis., Renal fail. 0.40 ă1

3

1 Resp. fail. 0.31 ă1
2 Lower. Resp. dis., Dis. of white blood cells 0.50 ă1
3 Resp. fail., Nerv. sys. disord., Disord. lipid metabol 0.70 ă1
4 Resp. fail., Unclass., Nerv. sys. disord., Disord. lipid metabol 0.70 ă1

4

1 Resp. fail. 0.53 ă1
2 Resp. fail., Fluid disord. 0.63 ă1
3 Resp. fail., Fluid disord. 0.63 ă1
4 Resp. fail., Fluid disord. 0.63 ă1

5

1 Resp. fail. 0.31 ă1
2 Chronic obs. pulmonary dis., Renal fail. 0.50 ă1
3 Liver diseas., Gastrointestinal disord., Renal fail. 0.50 ă1
4 Liver diseas., Gastrointestinal disord., Renal fail. 0.50 ă1

5K

1

1 Cardiac arrest 0.60 ă1
2 Resp. fail., Cardiac arrest 0.75 ă1
3 Shock, Resp. fail., Chronic kidney dis. 0.80 1
4 Septicemia, Resp. fail., Liver diseas., Renal fail. 0.83 5

2

1 Cardiac arrest 0.70 ă1
2 Coronary atherosclerosis, Cardiac arrest 0.72 ă1
3 Coronary atherosclerosis, Cardiac arrest 0.72 ă1
4 Coronary atherosclerosis, Cardiac arrest 0.72 5

3

1 Cardiac arrest 0.50 ă1
2 Resp. fail., Upper resp. infect. 0.50 ă1
3 Secondary malign., Lower. Resp. dis., Aftercare 0.63 ă1
4 Secondary malign., Lower. Resp. dis., Aftercare 0.63 5

4

1 Cardiac arrest 0.73 ă1
2 Cardiac arrest 0.73 ă1
3 Cardiac arrest 0.73 ă1
4 Cardiac arrest 0.73 4

5

1 Cardiac arrest 0.62 ă1
2 Shock, Mental health 0.70 ă1
3 Urinary tract infect., Septicemia, Resp. fail. 0.76 ă1
4 Urinary tract infect., Resp. fail., Pneumonia, Abdominal pain 0.80 5

50K

1

1 Cardiac arrest 0.68 ă1
2 Coma, Cardiac arrest 0.83 ă1
3 Epilepsy, Cardiac arrest, Renal fail. 1.00 7
4 Shock, Metabolic disord., Coma, Cardiac arrest 1.00 65

2

1 Cardiac arrest 0.72 ă1
2 Dis. of white blood cells, Cardiac arrest 0.84 ă1
3 Septicemia, Dis. of white blood cells, Cardiac arrest 1.00 6
4 Resp. fail., Coma, Chronic obs. pulmonary dis., Cardiac arrest 1.00 69

3

1 Cardiac arrest 0.63 ă1
2 Shock, Secondary malign. 0.83 ă1
3 Secondary malign., Resp. fail., Gastrointestinal hemor. 1.00 7
4 Diab. mell. with complications, Coma, Cardiac arrest, Renal fail. 1.00 67

4

1 Cardiac arrest 0.70 ă1
2 Epilepsy, Cardiac arrest 0.83 ă1
3 Nutri. defic., Renal fail., Cardiac arrest 1.00 7
4 Essential hypertension, Epilepsy, Cardiac arrest, Renal fail. 1.00 64

5

1 Cardiac arrest 0.62 ă1
2 Chronic obs. pulmonary dis., Cardiac arrest 0.72 ă1
3 Secondary malign., Pneumonia, Acute posthemor. anemia 0.91 7
4 Septicemia, Metabolic disord., Mainten. chemotherapy, E Codes. effects of medical drugs 1.00 68

100K

1

1 Cardiac arrest 0.69 ă1
2 Coma, Cardiac arrest 0.83 1
3 Nutri. defic., Cardiac arrest, Acute myocardial infarc. 1.00 14
4 Urin tract infections, Mental health, Resp. fail., Chemotherapy 1.00 114

2

1 Cardiac arrest 0.66 ă1
2 Coma, Cardiac arrest 0.83 1
3 Phlebitis, Chronic ulcer of skin, Cardiac arrest 1.00 13
4 Mental health, Pulmonary heart dis., Pleurisy, Cardiac arrest 1.00 121

3

1 Cardiac arrest 0.65 ă1
2 Shock, Second. malign. 0.78 1
3 Pulmonary heart dis., Dementia, Aspir. pneumonitis 1.00 12
4 Resp. fail., E Codes. effects of medical drugs, Chronic obstr. pulm. dis. and bronch., Cardiac arrest 1.00 115

4

1 Cardiac arrest 0.69 ă1
2 Epilepsy, Cardiac arrest 0.80 1
3 Epilepsy, Complic. of surgical proced., Cardiac arrest 1.00 13
4 Dis. of white blood cells, Complic. of surgical proced., Cardiac arrest, Bacterial infect. 1.00 116

5

1 Cardiac arrest 0.63 ă1
2 Coma, Cardiac arrest 0.74 1
3 Shock, Coma, Cardiac arrest 0.85 12
4 Septicemia, Connect. tissue dis., Chemotherapy, E Codes. effects of medical drugs 1.00 119
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